首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
从生物混合燃料成分、燃烧室结构和排气再循环等方面探索降低柴油机排放的方法。通过对柴油机排放性能的大量试验研究,结果表明:对于直喷式柴油机,生物混合燃料的NOx排放与柴油的排放基本相当,碳烟排放则比柴油有较大幅度的降低,而涡流室柴油机,NOx的排放量却有大幅度的降低,碳烟排放则比直喷式柴油机有更大幅度的降低,生物燃料的添加比例对NOx的排放影响不大。柴油机采用排气再循环技术后,混合燃料的碳烟排放仍比柴油少,混合燃料可以承载一定的EGR率而不增加碳烟排放。排气再循环可以大幅度地降低NOx排放且与EGR率有关,与燃料的性质关系不大。涡流室柴油机采用生物燃料和排气再循环,可以同时降低NOx和碳烟的排放,排放效果非常优良。  相似文献   

2.
The present study analyzes the emission pattern of Decanol combined Jatropha biodiesel (JBD100) fueled diesel engine and compared with conventional diesel fuel (D100). Experiments were conducted in a single-cylinder, 4-stroke naturally aspirated diesel engine with an eddy current dynamometer at a constant speed of 1800 rpm. Modified fuel was prepared using a mechanical agitator, in which the Decanol concentration was varied from 10 to 20% to JBD100. The physicochemical properties of Decanol combined biodiesel are within ASTM limits. JBD100 promotes a lower level of carbon monoxide (CO) hydrocarbon (HC), and smoke emissions with notable increases in NOx and carbon dioxide (CO2) emissions. An inclusion of 20% Decanol in JBD100 reduces the NOx, Smoke, CO, and HC emission by 7.4%, 4.4%, 5.7%, and 5.9%, respectively, under full brake power.  相似文献   

3.
H.E. Saleh 《Renewable Energy》2009,34(10):2178-2186
Jojoba methyl ester (JME) has been used as a renewable fuel in numerous studies evaluating its potential use in diesel engines. These studies showed that this fuel is good gas oil substitute but an increase in the nitrogenous oxides emissions was observed at all operating conditions. The aim of this study mainly was to quantify the efficiency of exhaust gas recirculation (EGR) when using JME fuel in a fully instrumented, two-cylinder, naturally aspirated, four-stroke direct injection diesel engine. The tests were carried out in three sections. Firstly, the measured performance and exhaust emissions of the diesel engine operating with diesel fuel and JME at various speeds under full load are determined and compared. Secondly, tests were performed at constant speed with two loads to investigate the EGR effect on engine performance and exhaust emissions including nitrogenous oxides (NOx), carbon monoxide (CO), unburned hydrocarbons (HC) and exhaust gas temperatures. Thirdly, the effect of cooled EGR with high ratio at full load on engine performance and emissions was examined. The results showed that EGR is an effective technique for reducing NOx emissions with JME fuel especially in light-duty diesel engines. With the application of the EGR method, the CO and HC concentration in the engine-out emissions increased. For all operating conditions, a better trade-off between HC, CO and NOx emissions can be attained within a limited EGR rate of 5–15% with very little economy penalty.  相似文献   

4.
Biodiesel is an alternative fuel consisting of the alkyl esters of fatty acids from vegetable oils or animal fats. Vegetable oils are produced from numerous oil seed crops (edible and non-edible), e.g., rapeseed oil, linseed oil, rice bran oil, soybean oil, etc. Research has shown that biodiesel-fueled engines produce less carbon monoxide (CO), unburned hydrocarbon (HC), and particulate emissions compared to mineral diesel fuel but higher NOx emissions. Exhaust gas recirculation (EGR) is effective to reduce NOx from diesel engines because it lowers the flame temperature and the oxygen concentration in the combustion chamber. However, EGR results in higher particulate matter (PM) emissions. Thus, the drawback of higher NOx emissions while using biodiesel may be overcome by employing EGR. The objective of current research work is to investigate the usage of biodiesel and EGR simultaneously in order to reduce the emissions of all regulated pollutants from diesel engines. A two-cylinder, air-cooled, constant speed direct injection diesel engine was used for experiments. HCs, NOx, CO, and opacity of the exhaust gas were measured to estimate the emissions. Various engine performance parameters such as thermal efficiency, brake specific fuel consumption (BSFC), and brake specific energy consumption (BSEC), etc. were calculated from the acquired data. Application of EGR with biodiesel blends resulted in reductions in NOx emissions without any significant penalty in PM emissions or BSEC.  相似文献   

5.
对增压柴油机燃用 L PG-柴油双燃料、采用 2种机电联合控制方案进行了较为深入的研究 ,对比分析了原柴油机和机电联合控制 L PG-柴油双燃料发动机的动力性、燃料经济性和碳烟、NOx、CO、HC排放。机电联合控制方案 1的试验研究表明 :掺烧 L PG后 ,可以显著地降低柴油机的碳烟排放 ;但在小负荷范围内 ,燃料消耗率略有增加 ,HC、CO排放增加较多。机电联合控制方案 2的试验研究表明 :双燃料发动机和原柴油机外特性相比 ,转矩几乎不降低 ,燃料消耗率略有下降 ,碳烟排放显著降低 ,NOx、CO排放变化不大 ,HC排放增加 ;双燃料发动机和原柴油机负荷特性相比 ,燃料消耗率在小负荷范围内持平而在中等以上负荷略有下降 ,碳烟排放显著降低 ,NOx 排放变化不大 ,HC、CO排放在小负荷范围内基本相同而在中等以上负荷略有增加。  相似文献   

6.
To meet stringent vehicular exhaust emission norms worldwide, several exhaust pre-treatment and post-treatment techniques have been employed in modern engines. Exhaust Gas Recirculation (EGR) is a pre-treatment technique, which is being used widely to reduce and control the oxides of nitrogen (NOx) emission from diesel engines. EGR controls the NOx because it lowers oxygen concentration and flame temperature of the working fluid in the combustion chamber. However, the use of EGR leads to a trade-off in terms of soot emissions. Higher soot generated by EGR leads to long-term usage problems inside the engines such as higher carbon deposits, lubricating oil degradation and enhanced engine wear. Present experimental study has been carried out to investigate the effect of EGR on soot deposits, and wear of vital engine parts, especially piston rings, apart from performance and emissions in a two cylinder, air cooled, constant speed direct injection diesel engine, which is typically used in agricultural farm machinery and decentralized captive power generation. Such engines are normally not operated with EGR. The experiments were carried out to experimentally evaluate the performance and emissions for different EGR rates of the engine. Emissions of hydrocarbons (HC), NOx, carbon monoxide (CO), exhaust gas temperature, and smoke opacity of the exhaust gas etc. were measured. Performance parameters such as thermal efficiency, brake specific fuel consumption (BSFC) were calculated. Reduction in NOx and exhaust gas temperature were observed but emissions of particulate matter (PM), HC, and CO were found to have increased with usage of EGR. The engine was operated for 96 h in normal running conditions and the deposits on vital engine parts were assessed. The engine was again operated for 96 h with EGR and similar observations were recorded. Higher carbon deposits were observed on the engine parts operating with EGR. Higher wear of piston rings was also observed for engine operated with EGR.  相似文献   

7.
Hydrogen is considered as an excellent energy carrier and can be used in diesel engines that operate in dual fuel mode. Many studies have shown that biodiesel, which is sustainable, clean, and safe, a good alternative to fossil fuel. However, tests have confirmed that using biodiesel or hydrogen as a fuel or added fuel in compression ignition engines increases NOx concentrations. Cooled or hot exhaust gas recirculation (EGR) effectively controls the NOx outflows of diesel engines. However, this technique is restricted by high particulate matter PM emissions and the low thermal efficiency of diesel engines.In this study, gaseous hydrogen was added to the intake manifold of a diesel engine that uses biodiesel fuel as pilot fuel. The investigation was conducted under heavy-EGR conditions. An EGR system was modified to achieve the highest possible control on the EGR ratio and temperature. Hot EGR was recirculated directly from the engine exhaust to the intake manifold. A heat exchanger was utilized to maintain the temperature of the cooled EGR at 25 °C.The supplied hydrogen increased NOx concentrations in the exhaust gas emissions and high EGR rates reduced the brake thermal efficiency. The reduction in NOx emissions depended on the added hydrogen and the EGR ratios when compared with pure diesel combustion. Adding hydrogen to significant amounts of recycled exhaust gas reduced the CO, PM, and unburned hydrocarbon (HC) emissions significantly. Results showed that using hydrogen and biodiesel increases engine noise, which is reduced by adding high levels of EGR.  相似文献   

8.
改善DMCC发动机废气排放质量的研究   总被引:4,自引:0,他引:4  
为找到全面降低柴油机排放的途径,研究了加装氧化催化转化器对柴油/甲醇组合燃烧(DMCC)发动机排放特性的影响,比较了不同工作模式下各污染物的排放量。试验结果表明,DMCC模式下NOx和碳烟排放下降幅度较大,但HC和CO排放增加较多,微粒比排放量也有所增加。经过氧化催化后,HC和CO得到了较大程度的降低,微粒(PM)经氧化后比原机也有所下降。DMCC经采用催化转化器后,废气质量得到改善,实现了同时降低柴油机的NOx和PM的目的。  相似文献   

9.
Palm oil (PO) was treated using different methods in order to use and test it as fuel in Compression Ignition (CI) engines. The treatments include PO preheated and preparation of PO/diesel oil blends, using mixtures of PO with waste cooking oil (WCO), which are converted into esters by a transesterification process. The purpose of this study is to evaluate the potential of the palm oil-based biofuels to replace diesel oil in CI engines.Tests were conducted in a single cylinder, four-stroke, air-cooled, direct injection diesel engine (no engine modifications were required). Experiments were initially carried out with diesel oil for providing baseline data. All the tested fuels have a low heating value compared to diesel fuel. A high fraction of PO in diesel fuel decreases the heating value of the blend. The brake thermal efficiency increases for the PO/Diesel blends. HC emissions for all those fuels except for the PO/Diesel blends are found lower, while CO emissions rise for all types of fuels. NOx emissions are higher at low load, but lower at full load, for the engine fueled with PO and lower both at middle and full load for the engine fueled with the esters.  相似文献   

10.
Natural gas is a fossil fuel that has been used and investigated extensively for use in spark-ignition (SI) and compression-ignition (CI) engines. Compared with conventional gasoline engines, SI engines using natural gas can run at higher compression ratios, thus producing higher thermal efficiencies but also increased nitrogen oxide (NOx) emissions, while producing lower emissions of carbon dioxide (CO2), unburned hydrocarbons (HC) and carbon monoxide (CO). These engines also produce relatively less power than gasoline-fueled engines because of the convergence of one or more of three factors: a reduction in volumetric efficiency due to natural-gas injection in the intake manifold; the lower stoichiometric fuel/air ratio of natural gas compared to gasoline; and the lower equivalence ratio at which these engines may be run in order to reduce NOx emissions. High NOx emissions, especially at high loads, reduce with exhaust gas recirculation (EGR). However, EGR rates above a maximum value result in misfire and erratic engine operation. Hydrogen gas addition increases this EGR threshold significantly. In addition, hydrogen increases the flame speed of the natural gas-hydrogen mixture. Power levels can be increased with supercharging or turbocharging and intercooling. Natural gas is used to power CI engines via the dual-fuel mode, where a high-cetane fuel is injected along with the natural gas in order to provide a source of ignition for the charge. Thermal efficiency levels compared with normal diesel-fueled CI-engine operation are generally maintained with dual-fuel operation, and smoke levels are reduced significantly. At the same time, lower NOx and CO2 emissions, as well as higher HC and CO emissions compared with normal CI-engine operation at low and intermediate loads are recorded. These trends are caused by the low charge temperature and increased ignition delay, resulting in low combustion temperatures. Another factor is insufficient penetration and distribution of the pilot fuel in the charge, resulting in a lack of ignition centers. EGR admission at low and intermediate loads increases combustion temperatures, lowering unburned HC and CO emissions. Larger pilot fuel quantities at these load levels and hydrogen gas addition can also help increase combustion efficiency. Power output is lower at certain conditions than diesel-fueled engines, for reasons similar to those affecting power output of SI engines. In both cases the power output can be maintained with direct injection. Overall, natural gas can be used in both engine types; however further refinement and optimization of engines and fuel-injection systems is needed.  相似文献   

11.
Use of bio-oils in diesel engines results in increased NOx and smoke and reduced brake thermal efficiency. Dual-fuel engines can use a wide range of fuels mainly alcohols and yet operate with high thermal efficiency and simultaneous reduction of NO and smoke emissions. The present study aims to explore the effect of methanol–waste cooking oil (WCO) dual-fuel mode on performance and emission characteristics in a single cylinder Compression ignition (CI) engine producing 3.7 kW at 1,500 rpm. WCO was injected in the conventional injection system, replacing diesel as pilot fuel. Methanol was fumigated along with intake air using a variable jet carburetor, which was installed in the inlet manifold. The methanol was fumigated, and the energy share was varied for each load till the knock limit. Performance parameters like brake thermal efficiency (BTE) and emission parameters like HC, CO, NO, and smoke emissions were tested for various energy shares of methanol with WCO as a pilot fuel. The results show that an increase in methanol fumigation reduced BTE at lower loads. At 75% and 100% load conditions, BTE was higher with methanol addition. The maximum BTE was observed for 38% methanol share, which is about 11% higher, compared to WCO at 100% load condition. Methanol fumigation aided in the simultaneous reduction of NO and smoke emission, and the maximum reduction was occurred with 51% methanol share at 100% load condition. HC and CO emissions were higher at all load conditions with methanol fumigation.  相似文献   

12.
直喷式柴油机燃用二甲基醚(DME)试验研究   总被引:9,自引:2,他引:9  
介绍了在1100单缸直喷式柴油机上燃用DME的发动机试验研究结果。研究表明:通过增加循环供油量可使柴油机燃用DME后恢复到原机略低,同时缸内最大爆发压力降低,发动机碳烟排放为零,HC和CO排放比原机略高,NOx排放比原柴油机降低约50%以上,供油提前角减少,缺内最大爆发压力降低,NOx排放可进一步大幅度降低,但HC排放略有升高;加大喷孔直径,缸内爆发压力升高,NOx排放升高,HC和CO排放在中低负荷相差不大,但在大负荷工况有所升高。  相似文献   

13.
Effects of Fischer-Tropsch (F-T) diesel fuel on the combustion and emission characteristics of a single-cylinder direct injection diesel engine under different fuel delivery advance angles were investigated. The experimental results show that F-T diesel fuel exhibits shorter ignition delay, lower peak values of premixed burning rate, lower combustion pressure and pressure rise rate, and higher peak value of diffusion burning rate than conventional diesel fuel when the engine remains unmodified. In addition, the unmodified engine with F-T diesel fuel has lower brake specific fuel consumption and higher effective thermal efficiency, and presents lower HC, CO, NOx and smoke emissions than conventional diesel fuel. When fuel delivery advance angle is retarded by 3 crank angle degrees, the combustion duration is obviously shortened; the peak values of premixed burning rate, the combustion pressure and pressure rise rate are further reduced; and the peak value of diffusion burning rate is further increased for F-T diesel fuel operation. Moreover, the retardation of fuel delivery advance angle results in a further significant reduction in NOx emissions with no penalty on specific fuel consumption and with much less penalty on HC, CO and smoke emissions.  相似文献   

14.
柴油机富氧燃烧排放特性的试验研究   总被引:7,自引:0,他引:7  
介绍了在S195柴油机上进行富氧燃烧的试验,对柴油机排放特性进行了比较与分析,目的是通过试验研究,找到在富氧条件下同时降低碳烟和NOx排放的方法。研究结果表明,增加进气氧的质量分数,碳烟排放大幅度下降,HC和CO也趋于下降,但NOx排放显增加;推迟供油提前角,可以使NOx排放降低,但碳烟有上升趋势,HC和CO排放增加。所以,采用富氧燃烧时必须同时推迟供油提前角,才能获得较低的排放量组合。  相似文献   

15.
共轨柴油机燃用不同配比生物柴油的性能与排放特性   总被引:8,自引:0,他引:8  
对某共轨柴油机燃用石化柴油、生物柴油及其混合燃料的动力性、经济性和排放特性进行了研究.在未对原机做任何改动的情况下,分别燃用了0%、5%、10%、20%和100%的5种不同体积配比的餐饮废油制生物柴油与石化柴油的混合燃料,分析比较了不同生物柴油配比对发动机功率、燃油消耗率,以及CO、HC、NO_x和烟度排放的影响.研究表明:共轨柴油机燃用生物柴油与石化柴油混合燃料后,功率略有下降,燃油消耗率有所上升;烟度、CO和HC排放减少,且随着生物柴油掺混比例的升高而降低;NO_x排放上升,且随着生物柴油掺混比例的升高而增加.  相似文献   

16.
F-T柴油对直喷式柴油机燃烧和排放的影响   总被引:7,自引:0,他引:7  
在两种不同供油提前角下研究了燃用F-T柴油对直喷式柴油机燃烧和排放特性的影响,结果表明:发动机不做任何调整时,与0号柴油相比,燃用F-T柴油的滞燃期较短,预混燃烧放热峰值较低,扩散燃烧放热峰值较高,最高燃烧压力和最大压力升高率较低,燃油消耗率和热效率都得到了改善,HC、CO、NOx和碳烟排放同时降低。当供油提前角推迟3℃A时,燃用F-T柴油燃烧持续期明显缩短,预混燃烧放热峰值、最高燃烧压力和最大压力升高率进一步降低,扩散燃烧放热峰值略有升高,燃油消耗率变化不大,NOx排放进一步降低, HC、CO和碳烟略有增加,其中HC排放与原柴油机相当,而CO和碳烟仍远低于原柴油机。  相似文献   

17.
Biodiesel either in neat form or as a mixture with diesel fuel is widely investigated to solve the twin problem of depletion of fossil fuels and environmental degradation. The main objective of the present study is to compare performance, emission and combustion characteristics of biodiesel derived from non edible Jatropha oil in a dual fuel diesel engine with base line results of diesel fuel. The performance parameters evaluated were: brake thermal efficiency, brake specific fuel consumption, power output. As a part of combustion study, in-cylinder pressure, rate of pressure rise and heat release rates were evaluated. The emission parameters such as carbon monoxide, carbon dioxide, un-burnt hydrocarbon, oxides of nitrogen and smoke opacity with the different fuels were also measured and compared with base line results. The different properties of Jatropha oil after transestrification were within acceptable limits of standards as set by many countries. The brake thermal efficiency of Jatropha methyl ester and its blends with diesel were lower than diesel and brake specific energy consumption was found to be higher. However, HC, CO and CO2 and smoke were found to be lower with Jatropha biodiesel fuel. NOx emissions on Jatropha biodiesel and its blend were higher than Diesel. The results from the experiments suggest that biodiesel derived from non edible oil like Jatropha could be a good substitute to diesel fuel in diesel engine in the near future as far as decentralized energy production is concerned. In view of comparable engine performance and reduction in most of the engine emissions, it can be concluded and biodiesel derived from Jatropha and its blends could be used in a conventional diesel engine without any modification.  相似文献   

18.
Performance and emission characteristics of two compression ignited engines of different compression ratios, number of cylinders, cooling system, and power output are studied. Waste vegetable oil-derived biofuel is used. Engines are fueled with B0, B20 and B100 mixtures. Thermal efficiency, brake specific consumption and engine emissions (CO, Unburned HC, O2 and NO) are reported and comparisons are made for fuel mixtures running on both engines. Trends of emissions and performance curves are compared to the literature of the available data. It is noted that the biofuel certainly affects unburned HC emissions regardless of engine specifications and/or operating conditions. However, the type of fuel or adding biofuel to diesel may not affect parameters such as exhaust gas temperature and emissions (CO, Unburned HC, O2, NO). These parameters may change as functions of engine specifications and operating conditions regardless of biofuel or diesel being used. These findings are supported by separate investigations using different biofuels in literature.  相似文献   

19.
Compression ignition (CI) engines used in the transportation sector operates on fossil diesel and is one of the biggest causes of air pollution. Numerous studies were carried out over last two decades to substitute the fossil diesel with biofuels so that the net carbon dioxide (CO2) emission can be minimized. However, the engine performance with these fuel was sub-standard and there were many long-term issues. Therefore, many researchers inducted hydrogen along with the biofuels. The present study gives an outlook on the effect of hydrogen addition with biodiesel/vegetable oil from various sources in CI engine. Engine parameters (brake thermal efficiency, brake specific fuel consumption), combustion parameters (in-cylinder pressure and heat release rate) and emission parameters (unburned hydrocarbon (HC), carbon monoxide (CO), oxides of nitrogen (NOx) and smoke emissions) were evaluated in detail. The results show that hydrogen induction in general improves the engine performance as compared to biodiesel/vegetable oil but it is similar/lower than diesel. Except NOx emissions all other emissions showed a decreasing trend with hydrogen addition. To counter this effect numerous after-treatment systems like selective catalytic reduction (SCR), exhaust gas recirculation (EGR), selective non-catalytic reduction system (SNCR) and non-selective catalytic reduction system (NSCR) were proposed by researchers which were also studied in this review.  相似文献   

20.
直喷式柴油机燃用F-T柴油时的性能与排放   总被引:3,自引:0,他引:3  
煤通过Fischer-Tropsch(F-T)合成可以获得十六烷值高、硫和芳香烃含量极低的F-T柴油.在一台未作改动的单缸直喷式柴油机上对燃用F-T柴油时发动机的性能和排放进行了研究.结果表明,在相同工况下与燃用常规柴油相比,燃用F-T柴油时的滞燃期较短,预混燃烧放热峰值较低,扩散燃烧放热峰值较高,最高燃烧压力略低,最大压力升高率显著下降,燃油消耗率和热效率都得到了改善.燃用F-T柴油可同时降低CO、HC、NOx和碳烟排放,其中NOx和碳烟排放分别平均降低了16.7%和40.3%.研究表明F-T柴油是柴油机优秀的清洁代用燃料.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号