首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intermetallic compounds (IMCs) formed at the interface between the Sn-9Zn-1.5Ag-0.5Bi lead-free solder alloy and unfluxed Cu substrate have been investigated by x-ray diffraction, optical microscopy, scanning electron microscopy (SEM), and energy-dispersive spectrometry (EDS). The melting point and melting range of the Sn-9Zn-1.5Ag-0.5Bi solder alloy are determined as 195.9°C and 10°C, respectively, by differential scanning calorimetry (DSC). Cu6Sn5 and Cu5Zn8 IMCs are formed between the Sn-9Zn-1.5Ag-0.5Bi/unfluxed Cu substrate wetted at 250°C for 10 sec. The interfacial adhesion strength changes from 10.27±0.68 MPa to 8.58±0.59 MPa when soldering time varies from 10 sec to 30 sec at 250°C.  相似文献   

2.
In flip chip technology, Al/Ni(V)/Cu under-bump metallization (UBM) is currently applicable for Pb-free solder, and Sn−Ag−Cu solder is a promising candidate to replace the conventional Sn−Pb solder. In this study, Sn-3.0Ag-(0.5 or 1.5)Cu solder bumps with Al/Ni(V)/Cu UBM after assembly and aging at 150°C were employed to investigate the elemental redistribution, and reaction mechanism between solders and UBMs. During assembly, the Cu layer in the Sn-3.0Ag-0.5Cu joint was completely dissolved into solders, while Ni(V) layer was dissolved and reacted with solders to form (Cu1−y,Niy)6Sn5 intermetallic compound (IMC). The (Cu1−y,Niy)6Sn5 IMC gradually grew with the rate constant of 4.63 × 10−8 cm/sec0.5 before 500 h aging had passed. After 500 h aging, the (Cu1−y,Niy)6Sn5 IMC dissolved with aging time. In contrast, for the Sn-3.0Ag-1.5Cu joint, only fractions of Cu layer were dissolved during assembly, and the remaining Cu layer reacted with solders to form Cu6Sn5 IMC. It was revealed that Ni in the Ni(V) layer was incorporated into the Cu6Sn5 IMC through slow solid-state diffusion, with most of the Ni(V) layer preserved. During the period of 2,000 h aging, the growth rate constant of (Cu1−y,Niy)6Sn5 IMC was down to 1.74 × 10−8 cm/sec0.5 in, the Sn-3.0Ag-1.5Cu joints. On the basis of metallurgical interaction, IMC morphology evolution, growth behavior of IMC, and Sn−Ag−Cu ternary isotherm, the interfacial reaction mechanism between Sn-3.0Ag-(0.5 or 1.5)Cu solder bump and Al/Ni(V)/Cu UBM was discussed and proposed.  相似文献   

3.
Several near-eutectic solders of (1) Sn-3.5Ag, (2) Sn-3.0Ag-0.7Cu, (3) Sn-3.0Ag-1.5Cu, (4) Sn-3.7Ag-0.9Cu, and (5) Sn-6.0Ag-0.5Cu (in wt.% unless specified otherwise) were cooled at different rates after reflow soldering on the Cu pad above 250°C for 60 sec. Three different media of cooling were used to control cooling rates: fast water quenching, medium cooling on an aluminum block, and slow cooling in furnace. Both the solder composition and cooling rate after reflow have a significant effect on the intermetallic compound (IMC) thickness (mainly Cu6Sn5). Under fixed cooling condition, alloys (1), (3), and (5) revealed larger IMC thicknesses than that of alloys (2) and (4). Slow cooling produced an IMC buildup of thicker than 10 μm, while medium and fast cooling produced a thickness of thinner than 5 μm. The inverse relationship between IMC thickness and shear strength was confirmed. All the fast- and medium-cooled joints revealed a ductile mode (fracture surface was composed of the β-Sn phase), while the slow-cooled joints were fractured in a brittle mode (fracture surface was composed of Cu6Sn5 and Cu3Sn phases). The effect of isothermal aging at 130°C on the growth of the IMC, shear strength, and fracture mode is also reported.  相似文献   

4.
The effects of a rare-earth element on the microstructure, mechanical properties, and whisker growth of Sn-58Bi alloys and solder joints in ball grid array (BGA) packages with Ag/Cu pads have been investigated. Mechanical testing indicated that the elongation of Sn-58Bi alloys doped with Ce increased significantly, and the tensile strength decreased slightly, in compar- ison with undoped Sn-58Bi. In addition, the growth of both fiber- and hillock-shaped tin whiskers on the surface of Sn-58Bi-0.5Ce was retarded in the case of Sn-3Ag-0.5Cu-0.5Ce alloys. The growth of interfacial intermetallic compounds (IMC) in Sn-58Bi-0.5Ce solder joints was slower than that in Sn-58Bi because the activity of Ce atoms at the interface of the Cu6Sn5 IMC/solder was reduced. The reflowed Sn-58Bi and Sn-58Bi-0.5Ce BGA packages with Ag/Cu pads had a ball shear strength of 7.91 N and 7.64 N, which decreased to about 7.13 N and 6.87 N after aging at 100°C for 1000 h, respectively. The reflowed and aged solder joints fractured across the solder balls with ductile characteristics after ball shear tests.  相似文献   

5.
This study compares the high-Ag-content Sn-3Ag-0.5Cu with the low- Ag-content Sn-1Ag-0.5Cu solder alloy and the three quaternary solder alloys Sn-1Ag-0.5Cu-0.1Fe, Sn-1Ag-0.5Cu-0.3Fe, and Sn-1Ag-0.5Cu-0.5Fe to understand the beneficial effects of Fe on the microstructural stability, mechanical properties, and thermal behavior of the low-Ag-content Sn-1Ag-0.5Cu solder alloy. The results indicate that the Sn-3Ag-0.5Cu solder alloy possesses small primary β-Sn dendrites and wide interdendritic regions consisting of a large number of fine Ag3Sn intermetallic compound (IMC) particles. However, the Sn-1Ag-0.5Cu solder alloy possesses large primary β-Sn dendrites and narrow interdendritic regions of sparsely distributed Ag3Sn IMC particles. The Fe-bearing SAC105 solder alloys possess large primary β-Sn dendrites and narrow interdendritic regions of sparsely distributed Ag3Sn IMC particles containing a small amount of Fe. Moreover, the addition of Fe leads to the formation of large circular FeSn2 IMC particles located in the interdendritic regions. On the one hand, tensile tests indicate that the elastic modulus, yield strength, and ultimate tensile strength (UTS) increase with increasing Ag content. On the other hand, increasing the Ag content reduces the total elongation. The addition of Fe decreases the elastic modulus, yield strength, and UTS, while the total elongation is still maintained at the Sn-1Ag-0.5Cu level. The effect of aging on the mechanical behavior was studied. After 720 h and 24 h of aging at 100°C and 180°C, respectively, the Sn-1Ag-0.5Cu solder alloy experienced a large degradation in its mechanical properties after both of the aging conditions, whereas the mechanical properties of the Sn-3Ag-0.5Cu solder alloy degraded more dramatically after 24 h of aging at 180°C. However, the Fe-bearing SAC105 solder alloys exhibited only slight changes in their mechanical properties after both aging procedures. The inclusion of Fe in the Ag3Sn IMC particles suppresses their IMC coarsening, which stabilizes the mechanical properties of the Fe-bearing SAC105 solder alloys after aging. The results from differential scanning calorimetry (DSC) tests indicate that the addition of Fe has a negligible effect on the melting behavior. However, the addition of Fe significantly reduces the solidification onset temperature and consequently increases the degree of undercooling. In addition, fracture surface analysis indicates that the addition of Fe to the Sn-1Ag-0.5Cu alloy does not affect the mode of fracture, and all tested alloys exhibited large ductile dimples on the fracture surface.  相似文献   

6.
Sn-Ag-Cu solder is a promising candidate to replace conventional Sn-Pb solder. Interfacial reactions for the flip-chip Sn-3.0Ag-(0.5 or 1.5)Cu solder joints were investigated after aging at 150°C. The under bump metallization (UBM) for the Sn-3.0Ag-(0.5 or 1.5)Cu solders on the chip side was an Al/Ni(V)/Cu thin film, while the bond pad for the Sn-3.0Ag-0.5Cu solder on the plastic substrate side was Cu/electroless Ni/immersion Au. In the Sn-3.0Ag-0.5Cu joint, the Cu layer at the chip side dissolved completely into the solder, and the Ni(V) layer dissolved and reacted with the solder to form a (Cu1−y,Niy)6Sn5 intermetallic compound (IMC). For the Sn-3.0Ag-1.5Cu joint, only a portion of the Cu layer dissolved, and the remaining Cu layer reacted with solder to form Cu6Sn5 IMC. The Ni in Ni(V) layer was incorporated into the Cu6Sn5 IMC through slow solid-state diffusion, with most of the Ni(V) layer preserved. At the plastic substrate side, three interfacial products, (Cu1−y,Niy)6Sn5, (Ni1−x,Cux)3Sn4, and a P-rich layer, were observed between the solder and the EN layer in both Sn-Ag-Cu joints. The interfacial reaction near the chip side could be related to the Cu concentration in the solder joint. In addition, evolution of the diffusion path near the chip side in Sn-Ag-Cu joints during aging is also discussed herein.  相似文献   

7.
The electrochemical properties of the joints formed between Sn-9Zn-1.5Ag-1Bi alloys and Cu substrates in a 3.5 wt.% NaCl solution have been investigated by potentiodynamic polarization, X-ray diffraction, and scanning electron microscopy. For the Sn-9Zn-1.5Ag-1Bi/Cu joints in a 3.5 wt.% NaCl solution, corrosion current (I corr), corrosion potential (E corr) and corrosion resistance (R p) are 2.46 × 10−6 A/cm2, −1.18 V, and 7.54 × 103 Ωcm2, respectively. Cu6Sn5, Cu5Zn8, and Ag3Sn are formed at the interface between the Sn-9Zn-1.5Ag-xBi solder alloy and Cu substrate. The corrosion products of ZnCl2, SnCl2 and ZnO are formed at the Sn-9Zn-1.5Ag-xBi/Cu joints after polarization in a 3.5 wt.% NaCl solution. Pits are also formed on the surface of the solder alloys.  相似文献   

8.
The formation of Ag3Sn plates in the Sn-Ag-Cu lead-free solder joints for two different Ag content solder balls was investigated in wafer level chip scale packages (WLCSPs). After an appropriate surface mount technology reflow process on a printed circuit board, samples were subjected to 150°C high-temperature storage (HTS), 1,000 h aging, or 1,000 cycles thermal cycling test (TCT). Sequentially, the cross-sectional analysis was scrutinized using a scanning electron microscope/energy dispersive spectrometer (SEM/EDX) to observe the metallurgical evolution of the amount of the Ag3Sn plates at the interface and the solder bulk itself. Pull and shear tests were also performed on samples. It was found that the interfacial intermetallic compound (IMC) thickness, the overall IMC area, and the numbers of Ag3Sn plates increase with increasing HTS and TCT cycles. The amount of large Ag3Sn plates found in the Sn-4.0Ag-0.5 Cu solder balls is much greater than that found in the Sn-2.6Ag-0.5Cu solder balls; however, no significant difference was found in the joint strength between two different Ag content solder joints.  相似文献   

9.
Long-term, solid-state intermetallic compound (IMC) layer growth was examined in 95.5Sn-3.9Ag-0.6Cu (wt.%)/copper (Cu) couples. Aging temperatures and times ranged from 70°C to 205°C and from 1 day to 400 days, respectively. The IMC layer thicknesses and compositions were compared to those investigated in 96.5Sn-3.5Ag/Cu, 95.5Sn-0.5Ag-4.0Cu/Cu, and 100Sn/Cu couples. The nominal Cu3Sn and Cu6Sn5 stoichiometries were observed. The Cu3Sn layer accounted for 0.4–0.6 of the total IMC layer thickness. The 95.5Sn-3.9Ag-0.6Cu/Cu couples exhibited porosity development at the Cu3Sn/Cu interface and in the Cu3Sn layer as well as localized “plumes” of accelerated Cu3Sn growth into the Cu substrate when aged at 205°C and t>150 days. An excess of 3–5at.%Cu in the near-interface solder field likely contributed to IMC layer growth. The growth kinetics of the IMC layer in 95.5Sn-3.9Ag-0.6Cu/Cu couples were described by the equation x=xo+Atnexp [−ΔH/RT]. The time exponents, n, were 0.56±0.06, 0.54±0.07, and 0.58±0.07 for the Cu3Sn layer, the Cu6Sn5, and the total layer, respectively, indicating a diffusion-based mechanism. The apparent-activation energies (ΔH) were Cu3Sn layer: 50±6 kJ/mol; Cu6Sn5 layer: 44±4 kJ/mol; and total layer: 50±4 kJ/mol, which suggested a fast-diffusion path along grain boundaries. The kinetics of Cu3Sn growth were sensitive to the Pb-free solder composition while those of Cu6Sn5 layer growth were not so.  相似文献   

10.
Bismuth additions of 1% to 10% were made to the 96.5Sn-3.5Ag (wt.%) alloy in an effort to develop a Sn-Ag-Bi ternary composition. A DSC evaluation of the melting properties of the 91.84Sn-3.33Ag-4.83Bi composition suggested the appearance of metastable, short-range order in the atomic structure as a result of low temperature, thermal aging. More extensive solid-state aging studies on 91.84Sn-3.33Ag-4.83Bi/Cu couples resulted in the growth of an intermetallic compound layer at the solder/substrate interface comprised of Cu3Sn and the Cu6Sn5 sub-layers. The growth kinetics of the total layer thickness (x) as a function of solid-state aging time (t) and temperature (T) were represented by the following expression: $$x - x_o = A t^n \exp ( - Q/RT)$$ where x0=0.57 × 10?6 m; A=6.22 × 10?3 m/sn; n=0.46±0.15; and Q=49±8 kJ/mol. TEM analysis of the 91.84Sn-3.33Ag-4.83Bi composition indicated that solid-solution and precipitation strengthening mechanisms were a likely consequence of the Bi additions. Contact angle measurements, Cu/solder/Cu solder joint shear strength tests, and microhardness evaluations were also performed on the Sn-Ag-Bi alloys; those results are reported in Part II.  相似文献   

11.
This study investigates the dissolution behavior of the metallic substrates Cu and Ag and the intermetallic compound (IMC)-Ag3Sn in molten Sn, Sn-3.0Ag-0.5Cu, Sn-58Bi and Sn-9Zn (in wt.%) at 300, 270 and 240°C. The dissolution rates of both Cu and Ag in molten solder follow the order Sn > Sn-3.0Ag-0.5Cu >Sn-58Bi > Sn-9Zn. Planar Cu3Sn and scalloped Cu6Sn5 phases in Cu/solders and the scalloped Ag3Sn phase in Ag/solders are observed at the metallic substrate/solder interface. The dissolution mechanism is controlled by grain boundary diffusion. The planar Cu5Zn8 layer formed in the Sn-9Zn/Cu systems. AgZn3, Ag5Zn8 and AgZn phases are found in the Sn-9Zn/Ag system and the dissolution mechanism is controlled by lattice diffusion. Massive Ag3Sn phases dissolved into the solders and formed during solidification processes in the Ag3Sn/Sn or Sn-3.0Ag-0.5Cu systems. AgZn3 and Ag5Zn8 phases are formed at the Sn-9Zn/Ag3Sn interface. Zn atoms diffuse through Ag-Zn IMCs to form (Ag, Zn)Sn4 and Sn-rich regions between Ag5Zn8 and Ag3Sn.  相似文献   

12.
After reflow of Sn-3.8Ag-0.7Cu and Sn-20In-2Ag-0.5Cu solder balls on Au/Ni surface finishes in ball grid array (BGA) packages, scallop-shaped intermetallic compounds (Cu0.70Ni0.28Au0.02)6Sn5 (IM1a) and (Cu0.76Ni0.24)6(Sn0.86In0.14)5 (IM1b), respectively, appear at the interfaces. Aging at 100°C and 150°C for Sn-3.8Ag-0.7Cu results in the formation of a new intermetallic phase (Cu0.70Ni0.14Au0.16)6Sn5 (IM2a) ahead of the former IM1a intermetallics. The growth of the newly appeared intermetallic compound, IM2a, is governed by a parabolic relation with an increase in aging time, with a slight diminution of the former IM1a intermetallics. After prolonged aging at 150°C, the IM2a intermetallics partially spall off and float into the solder matrix. Throughout the aging of Sn-20In-2Ag-.5Cu solder joints at 75°C and 115°C, partial spalling of the IM1b interfacial intermetallics induces a very slow increase in thickness. During aging at 115°C for 700 h through 1,000 h, the spalled IM1b intermetallics in the solder matrix migrate back to the interfaces and join with the IM1b interfacial intermetallics to react with the Ni layers of the Au/Ni surface finishes, resulting in the formation and rapid growth of a new (Ni0.85Cu0.15)(Sn0.71In0.29)2 intermetallic layer (IM2b). From ball shear tests, the strengths of the Sn-3.8Ag-0.7Cu and Sn-20In-2Ag-0.5Cu solder joints after reflow are ascertained to be 10.4 N and 5.4 N, respectively, which drop to lower values after aging. An erratum to this article is available at .  相似文献   

13.
Solder interconnect reliability is influenced by environmentally imposed loads, solder material properties, and the intermetallics formed within the solder and the metal surfaces to which the solder is bonded. Several lead-free metallurgies are being used for component terminal plating, board pad plating, and solder materials. These metallurgies react together and form intermetallic compounds (IMCs) that affect the metallurgical bond strength and the reliability of solder joint connections. This study evaluates the composition and extent of intermetallic growth in solder joints of ball grid array components for several printed circuit board pad finishes and solder materials. Intermetallic growth during solid state aging at 100°C and 125°C up to 1000 h for two solder alloys, Sn-3.5Ag and Sn-3.0Ag-0.5Cu, was investigated. For Sn-3.5Ag solder, the electroless nickel immersion gold (ENIG) pad finish was found to result in the lowest IMC thickness compared to immersion tin (ImSn), immersion silver (ImAg), and organic solderability preservative (OSP). Due to the brittle nature of the IMC, a lower IMC thickness is generally preferred for optimal solder joint reliability. A lower IMC thickness may make ENIG a desirable finish for long-life applications. Activation energies of IMC growth in solid-state aging were found to be 0.54 ± 0.1 eV for ENIG, 0.91 ± 0.12 eV for ImSn, and 1.03 ± 0.1 eV for ImAg. Cu3Sn and Cu6Sn5 IMCs were found between the solder and the copper pad on boards with the ImSn and ImAg pad finishes. Ternary (Cu,Ni)6Sn5 intermetallics were found for the ENIG pad finish on the board side. On the component side, a ternary IMC layer composed of Ni-Cu-Sn was found. Along with intermetallics, microvoids were observed at the interface between the copper pad and solder, which presents some concern if devices are subject to shock and vibration loading.  相似文献   

14.
The low-temperature Sn-9Zn-1.5Bi-0.5In-0.01P lead-free solder alloy is used to investigate the intermetallic compounds (IMCs) formed between solder and Cu substrates during thermal cycling. Metallographic observation, scanning electron microscopy, transmission electron microscopy, and electron diffraction analysis are used to study the IMCs. The γ-Cu5Zn8 IMC is found at the Sn-9Zn-1.5Bi-0.5In-0.01P/Cu interface. The IMC grows slowly during thermal cycling. The fatigue life of the Sn-9Zn-1.5Bi-0.5In-0.01P solder joint is longer than that of Pb-Sn eutectic solder joint because the IMC thickness of the latter is much greater than that of the former. Thermodynamic and diffusivity calculations can explain the formation of γ-Cu5Zn8 instead of Cu-Sn IMCs. The growth of IMC layer is caused by the diffusion of Cu and Zn elements. The diffusion coefficient of Zn in the Cu5Zn8 layer is determined to be 1.10×10−12 cm2/sec. A Zn-rich layer is found at the interface, which can prevent the formation of the more brittle Cu-Sn IMCs, slow down the growth of the IMC layer, and consequently enhance the fatigue life of the solder joint.  相似文献   

15.
The effects of Zn (1 wt.%, 3 wt.%, and 7 wt.%) additions to Sn-3.5Ag solder and various reaction times on the interfacial reactions between Sn-3.5Ag-xZn solders and Cu substrates a during liquid-state aging were investigated in this study. The composition and morphological evolution of interfacial intermetallic compounds (IMCs) changed significantly with the Zn concentration and reaction time. For the Sn-3.5Ag-1Zn/Cu couple, CuZn and Cu6Sn5 phases formed at the interface. With increasing aging time, the Cu6Sn5 IMC layer grew thicker, while the CuZn IMC layer drifted into the solder and decomposed gradually. Cu5Zn8 and Ag5Zn8 phases formed at the interfaces of Sn-3.5Ag-3Zn/Cu and Sn-3.5Ag-7Zn/Cu couples. With increasing reaction time, the Cu5Zn8 layer grew and Cu atoms diffused from the substrate to the solder, which transformed the Ag5Zn8 to (Cu,Ag)5Zn8. The Cu6Sn5 layer that formed between the Cu5Zn8 layer and Cu was much thinner at the Sn-3.5Ag-7Zn/Cu interface than at the Sn-3.5Ag-3Zn/Cu interface. Additionally, we measured the thickness of interfacial IMC layers and found that 3 wt.% Zn addition to the solder was the most effective for suppressing IMC growth at the interfaces.  相似文献   

16.
The growth kinetics of an intermetallic compound (IMC) layer formed between Sn-3.5Ag-0.5Cu (SAC) solders and Cu-Zn alloy substrates was investigated for samples aged at different temperatures. Scallop-shaped Cu6Sn5 formed after soldering by dipping Cu or Cu-10 wt.%Zn wires into the molten solder at 260°C. Isothermal aging was performed at 120°C, 150°C, and 180°C for up to 2000 h. During the aging process, the morphology of Cu6Sn5 changed to a planar type in both specimens. Typical bilayer of Cu6Sn5 and Cu3Sn and numerous microvoids were formed at the SAC/Cu interfaces after aging, while Cu3Sn and microvoids were not observed at the SAC/Cu-Zn interfaces. IMC growth on the Cu substrate was controlled by volume diffusion in all conditions. In contrast, IMC growth on Cu-Zn specimens was controlled by interfacial reaction for a short aging time and volume diffusion kinetics for a long aging time. The growth rate of IMCs on Cu-Zn substrates was much slower due to the larger activation energy and the lower layer growth coefficient for the growth of Cu-Sn IMCs. This effect was more prominent at higher aging temperatures.  相似文献   

17.
This study investigates the effects of various reaction times and Cu contents on the interfacial reactions between Sn-9Zn-xCu alloys and Ni substrates. After aging at 255°C for 1 h to 3 h, the Ni5Zn21 and Cu5Zn8 phases formed at the interface of Sn-9Zn/Ni and Sn-9Zn-1wt.%Cu/Ni couples, respectively. The (Ni,Zn)3Sn4 phase was found in the Sn-9Zn-4wt.%Cu/Ni couple, and the (Cu,Ni)6Sn5 and Cu6Sn5 phases formed, respectively, in the Sn-9Zn-7wt.%Cu/Ni and Sn-9Zn-10wt.%Cu/Ni couples. As the reaction time was increased from 5 h to 24 h, the (Cu5Zn8 + Ni5Zn21) phases replaced the Cu5Zn8 phase to form in the Sn-9Zn-1wt.%Cu/Ni couple; the (Ni,Zn)3Sn4 phase formed in the Sn-9Zn-4wt.%Cu/Ni couple, and (CuZn + Cu6Sn5) formed in the Sn-9Zn-10wt.%Cu alloys. Experimental results indicate that intermetallic compound (IMC) formation in Sn-9Zn-xCu/Ni couples changes dramatically with reaction time and Cu content. The Sn-Zn-Ni, Sn-Cu-Ni, and Sn-Zn-Cu ternary isothermal sections greatly help us to understand the IMC evolutions in the Sn-9Zn-xCu/Ni couples.  相似文献   

18.
The interfacial interaction between Cu substrates and Sn-3.5Ag-0.7Cu-xSb (x = 0, 0.2, 0.5, 0.8, 1.0, 1.5, and 2.0) solder alloys has been investigated under different isothermal aging temperatures of 100°C, 150°C, and 190°C. Scanning electron microscopy (SEM) was used to measure the thickness of the intermetallic compound (IMC) layer and observe the microstructural evolution of the solder joints. The IMC phases were identified by energy-dispersive x-ray spectroscopy (EDX) and x-ray diffractometry (XRD). The growth of both the Cu6Sn5 and Cu3Sn IMC layers at the interface between the Cu substrate and the solder fits a power-law relationship with the exponent ranging from 0.42 to 0.83, which suggests that the IMC growth is primarily controlled by diffusion but may also be influenced by interface reactions. The activation energies and interdiffusion coefficients of the IMC formation of seven solder alloys were determined. The addition of Sb has a strong influence on the growth of the Cu6Sn5 layer, but very little influence on the formation of the Cu3Sn IMC phase. The thickness of the Cu3Sn layer rapidly increases with aging time and temperature, whereas the thickness of the Cu6Sn5 layer increases slowly. This is probably due to the formation of Cu3Sn at the interface between two IMC phases, which occurs with consumption of Cu6Sn5. Adding antimony to Sn-3.5Ag-0.7Cu solder can evidently increase the activation energy of Cu6Sn5 IMC formation, reduce the atomic diffusion rate, and thus inhibit excessive growth of Cu6Sn5 IMCs. This study suggests that grain boundary pinning is one of the most important mechanisms for inhibiting the growth of Cu6Sn5 IMCs in such solder joints when Sb is added.  相似文献   

19.
SnPb-SnAgCu mixed solder joints with Sn-Pb soldering Sn-Ag-Cu Pb-free components are inevitably occurred in the high reliability applications. In this study, the interfacial behaviors in Sn-37Pb and Sn-3.0Ag-0.5Cu mixed solder joints was addressed and compared with Sn-37Pb solder joints and Sn-3.0Ag-0.5Cu solder joints with the influence from isothermal aging and electromigration. Considering the difference on the melting point between Sn-3.0Ag-0.5Cu and Sn-37Pb solder, two mixed solder joints: partial mixing and full mixing between Sn-Pb and Sn-Ag-Cu solders were reached with the peak reflowing temperature of 190 and 250 °C, respectively. During isothermal aging, the intermetallic compound (IMC) layer increased with aging time and its growth was diffusion controlled. There was also no obvious affect from the solder composition on IMC growth. After electromigration with the current density of 2.0 × 103 A/cm2, Sn-37Pb solder joints showed the shortest lifetime with the cracks observed at the cathode for the stressing time < 250 h. In Sn-3.0Ag-0.5Cu Pb-free solder joints, current stressing promoted the growth of IMC layer at the interfaces, but the growing rate of IMC at the anode interface was far faster than that at the cathode interface. Therefore, there existed an obvious polarity effect on IMC growth in Sn-Ag-Cu Pb-free solder joints. After Sn-37Pb was mixed with Sn-3.0Ag-0.5Cu Pb-free solder, whether the partial mixing or the full mixing between Sn-Pb and Sn-Ag-Cu can obviously depress both the crack formation at the cathode side and the IMC growth at the anode.  相似文献   

20.
Soldering with the lead-free tin-base alloys requires substantially higher temperatures (∼235–250°C) than those (213–223°C) required for the current tin-lead solders, and the rates for intermetallic compound (IMC) growth and substrate dissolution are known to be significantly greater for these alloys. In this study, the IMC growth kinetics for Sn-3.7Ag, Sn-0.7Cu, and Sn-3.8Ag-0.7Cu solders on Cu substrates and for Sn-3.8Ag-0.7Cu solder with three different substrates (Cu, Ni, and Fe-42Ni) are investigated. For all three solders on Cu, a thick scalloped layer of η phase (Cu6Sn5) and a thin layer of ε phase (Cu3Sn) were observed to form, with the growth of the layers being fastest for the Sn-3.8Ag-0.7Cu alloy and slowest for the Sn-3.7Ag alloy. For the Sn-3.8Ag-0.7Cu solder on Ni, only a relatively uniform thick layer of η phase (Cu,Ni)6Sn5 growing faster than that on the Cu substrate was found to form. IMC growth in both cases appears to be controlled by grain-boundary diffusion through the IMC layer. For the Fe-42Ni substrate with the Sn-3.8Ag-0.7Cu, only a very thin layer of (Fe,Ni)Sn2 was observed to develop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号