首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We recently reported that epidermal immunization using the PowderJet particle delivery device with plasmid vector pcDNA1/EDIM6 encoding rotavirus VP6 of murine strain EDIM induced high levels of serum rotavirus IgG but failed to protect mice against EDIM infection (Choi, A. H., Knowlton, D. R., McNeal, M. M., and Ward, R. L. (1997) Virology 232, 129-138.). This was extended to determine whether pcDNA1/EDIM4 or pcDNA1/EDIM7, which encode either rotavirus VP4 or VP7, the rotavirus neutralization proteins, could also induce rotavirus-specific antibody responses and if these responses resulted in protection. Titers of rotavirus serum IgG increased with the first dose in mice immunized with pcDNA1/EDIM7, but little or no serum rotavirus IgG was detected in mice immunized with pcDNA1/EDIM4. In vitro assays with these plasmids in rabbit reticulocyte lysates showed that VP4 was expressed but the amount was considerably lower than VP6 or VP7. To improve expression of VP4 and induction of rotavirus-specific humoral responses, the coding region of VP4 was cloned into the high-expression plasmid WRG7054 as a fusion protein containing the 22-amino-acid secretory signal peptide of tissue plasminogen activator (tPA) at its N terminus. In vitro expression of tPA::VP4 was significantly higher than unmodified VP4, and mice inoculated with WRG7054/EDIM4 generated high titers of rotavirus IgG. The coding sequence of VP7 without the first 162 nucleotides was also cloned into WRG7054, but no difference was observed between titers of serum rotavirus IgG in mice immunized with this plasmid (WRG7054/EDIM7Delta1-162) and pcDNA1/EDIM7. The rotavirus-specific IgG titers in all immune sera were predominantly IgG1 indicating induction of Th 2-type responses. None of the mice immunized with any of the VP4 or VP7 plasmids developed serum or fecal rotavirus IgA or neutralizing antibody to EDIM. When immunized mice were challenged with EDIM virus, there was no significant reduction in viral shedding relative to unimmunized controls. Therefore epidermal immunization with VP4 or VP7 alone elicited rotavirus IgG responses but did not protect against homologous rotavirus challenge.  相似文献   

2.
A Jennerian approach using live animal viruses to immunize humans is the current lead strategy for developing rotavirus vaccines. This strategy has been modified by incorporating human rotavirus VP7 genes into vaccine strains to induce serotype-specific neutralizing antibodies to human strains. However, the role of homotypic versus heterotypic immunity in protection is unclear. To investigate the importance of serotype-specific immunity in a mouse model, mice were immunized with rhesus rotavirus (RRV: G3, P5[3]), RRV-based modified Jennerian vaccine strains DxRRV (G1, P5[3]), DS1xRRV (G2, P5[3]), or ST3xRRV (G4, P5[3]), or bovine rotavirus NCDV (G6, P6[1]) and challenged with murine rotavirus ECw (G3, P[16]). Mice immunized with modified Jennerian vaccines exhibited complete to near-complete protection from challenge. NCDV-immunized mice also showed partial protection. The protection was correlated with fecal IgA levels to VP6, not serum IgG responses. Modified Jennerian vaccines induce both heterotypic and homotypic immunity in mice.  相似文献   

3.
We have evaluated the immunogenicity and protective efficacy of rotavirus subunit vaccines administered by mucosal routes. Virus-like particles (VLPs) produced by self-assembly of individual rotavirus structural proteins coexpressed by baculovirus recombinants in insect cells were the subunit vaccine tested. We first compared the immunogenicities and protective efficacies of VLPs containing VP2 and VP6 (2/6-VLPs) and G3 2/6/7-VLPs mixed with cholera toxin and administered by oral and intranasal routes in the adult mouse model of rotavirus infection. VLPs administered orally induced serum antibody and intestinal immunoglobulin A (IgA) and IgG. The highest oral dose (100 microg) of VLPs induced protection from rotavirus challenge (> or = 50% reduction in virus shedding) in 50% of the mice. VLPs administered intranasally induced higher serum and intestinal antibody responses than VLPs administered orally. All mice receiving VLPs intranasally were protected from challenge; no virus was shed after challenge. Since there was no difference in immunogenicity or protective efficacy between 2/6- and 2/6/7-VLPs, protection was achieved without inclusion of the neutralization antigens VP7 and VP4. We also tested the immunogenicities and protective efficacies of 2/6-VLPs administered intranasally without the addition of cholera toxin. 2/6-VLPs administered intranasally without cholera toxin induced lower serum and intestinal antibody titers than 2/6-VLPs administered with cholera toxin. The highest dose (100 microg) of 2/6-VLPs administered intranasally without cholera toxin resulted in a mean reduction in shedding of 38%. When cholera toxin was added, higher levels of protection were achieved with 10-fold less immunogen. VLPs administered mucosally offer a promising, safe, nonreplicating vaccine for rotavirus.  相似文献   

4.
F4 receptor-positive (F4R+) and F4 receptor-negative (F4R-) pigs were orally vaccinated with purified F4 fimbriae of enterotoxigenic Escherichia coli (ETEC). Serum immunoglobulin G (IgG) and IgA responses were readily detected in F4R+ animals, whereas immune responses were not detected in F4R- animals. Even after a subsequent oral infection with virulent F4(+) ETEC and a booster immunization with F4, the F4R- animals remained F4 seronegative whereas the unvaccinated F4R+ pigs exhibited clear IgA and IgG responses. These results clearly demonstrate that F4Rs are a prerequisite for an immune response following oral immunization. Furthermore, indications that oral F4 vaccination can induce mucosal protection were obtained, since the experimental ETEC infection did not induce a systemic booster response or fecal ETEC excretion in orally vaccinated F4R+ pigs, in contrast to the clear immune response and ETEC excretion of unvaccinated F4R+ animals. F4-specific IgA antibodies could be found in the feces of the vaccinated F4R+ pigs. They are secreted at the intestinal mucosal surface and appear to prevent ETEC infection. The F4R-dependent induction of a mucosal immune response can be used as a model to better understand mucosal immunization and mucosal immune responses and can contribute to the development of oral vaccines in veterinary as well as in human medicine.  相似文献   

5.
Cholera toxin (CT) and Escherichia coli heat-labile enterotoxin (LT) are the strongest mucosal immunogens identified to date and are also good adjuvants when given orally together in combination with unrelated antigens. We used these potent immunogens to monitor local and systemic immune responses following oral immunization of BALB/c mice, and compared their action on the following: (a) immunoglobulin production rates (IgG, IgM and IgA) in mucosal inductive (Peyer's patches-PPs), effector (intestinal lamina propria-LP, respiratory tract) and systemic (spleen) sites; (b) analysis of systemic antigen-specific antibodies (IgG subclasses, IgA and IgE); (c) time monitoring of fecal anti-CT and anti-LT antibodies, and (d) in vivo relevance of interleukin-6 (IL-6) to mucosal responses. Both mucosal immunogens elicited specific antibody responses (IgA, IgG) not only in the gastrointestinal tract (PP's and intestinal LP), but also in the respiratory tract and spleens of orally immunized mice. These mucosal responses were accompained by elevated secretion of IL-6 in all investigated tissues, indicating involvement of this cytokine in B-cell maturation processes. Furthermore, oral immunization with CT and LT induced elevated serum titers of IgG1 followed by IgG2a, IgG2b, IgG3 and IgA, while high antigen-specific IgA and IgG1 responses were found in fecal extracts. These findings illustrate the action of orally administered CT and LT, respectively, on several humoral and cellular immune responses not only at the gastrointestinal tract, the application site, but also in distant mucosal effector sites such as the respiratory tract. These data suggest the potential use of these mucosal adjuvants in oral immunization strategies to improve the local immune response in remote mucosal tissues, in accordance with the concept of a common mucosa-associated immune system.  相似文献   

6.
DNA vaccines expressing the envelope glycoprotein (GP) or nucleocapsid protein (NP) genes of Ebola virus were evaluated in adult, immunocompetent mice. The vaccines were delivered into the skin by particle bombardment of DNA-coated gold beads with the Powderject-XR gene gun. Both vaccines elicited antibody responses as measured by ELISA and elicited cytotoxic T cell responses as measured by chromium release assays. From one to four vaccinations with 0.5 microgram of the GP DNA vaccine resulted in a dose-dependent protection from Ebola virus challenge. Maximal protection (78% survival) was achieved after four vaccinations. Mice were completely protected with a priming dose of 0.5 microgram of GP DNA followed by three or four subsequent vaccinations with 1.5 micrograms of DNA. Partial protection could be observed for at least 9 months after three immunizations with 0.5 microgram of the GP DNA vaccine. Comparing the GP and NP vaccines indicated that approximately the same level of protection could be achieved with either vaccine.  相似文献   

7.
Several in vitro studies have shown that murine interleukin-5 (mIL-5) enhances IgA production by activated mucosal B cells. To date, however, there is no evidence that this factor significantly up-regulates mucosal IgA responses in vivo. Here, we show that expression of the gene for mIL-5 in a recombinant vaccinia virus vector markedly increases IgA responses to co-expressed heterologous antigen in the lungs of mice given intranasal inocula of the virus. The elevated local IgA responses to vectors expressing mIL-5 peaked at a fourfold higher level than those elicited by control virus at 14 days after infection and were sustained for at least 4 weeks. Increased IgA responses were abrogated in mice treated with monoclonal antibody against mIL-5 and were not detected in systemic lymphoid tissue. No enhancement of specific IgG levels was found either locally or systemically. Our results indicate that mIL-5 selectively enhances the development of mucosal IgA responses in vivo and suggest that expression of this factor in mucosal vaccine vectors may stimulate local immune reactivity.  相似文献   

8.
Specific antibody-secreting cells (ASC) appear in the blood as a response to oral vaccination in humans. Based on information from animal experiments, these cells are believed to be migrating to the mucosa. This review summarizes a series of studies aimed at a detailed characterization of the ASC response to a prototype oral vaccine Salmonella typhi Ty21a, with respect to its kinetics, Ig-class distribution, antigen specificity, influence of the administration route and nature of the antigen, and the corresponding antibody responses in serum. Different vaccine formulations as well as dosage schedules are compared, and the response to booster immunization is described. The response manifested by ASC in blood is shown to be independent from serum antibody responses. Moreover, it is shown to parallel with the results obtained for protection in field trials. Finally, some data on the homing receptor expression of these cells are presented, giving further evidence for the mucosal homing of these cells. The ASC assay offers a practical means for assessing immune response to oral vaccines in humans. It can be used as a laboratory parameter correlated with protection conferred by an oral typhoid vaccine. It can even be applied to measure active mucosal immunity, i.e., protective immunity by showing the relative reduction of the ASC response to an oral dose of live vaccine.  相似文献   

9.
We have investigated the effects of IL-12 and cholera toxin (CT) on the immune response to tetanus toxoid (TT) given by intranasal or oral routes. CT inhibited IL-12-induced IFN-gamma secretion both in vivo and in vitro. Intranasal administration of IL-12 to mice nasally immunized with the combined vaccine of TT and CT resulted in increased TT-specific IgG2a and IgG3 Abs, while IgG1 and IgE Ab responses were markedly reduced. This shift of the CT-induced immune response toward Th1 type was associated with TT-specific CD4+ T cells secreting IFN-gamma and reduced levels of Th2-type cytokines (i.e., IL-4, IL-5, IL-6, and IL-10). In contrast, intranasal IL-12 enhanced the CT-induced serum IgG1 and IgE Ab responses in mice given the combined vaccine orally. IFN-gamma secretion by TT-specific CD4+ T cells was also enhanced; however, Th2-type cytokine responses were predominant. Mucosal secretory IgA responses to oral or nasal vaccines were not affected by intranasal IL-12. Thus, intranasal IL-12 delivery influences Th cell subset development in mucosal inductive sites that are dependent on the route of vaccine delivery.  相似文献   

10.
Vaccination with naked DNA may be an alternative to conventional vaccines because it combines the efficacy of attenuated vaccines with the biological safety of inactivated vaccines. We recently showed that the vaccination with naked DNA coding for the immunorelevant glycoprotein D (gD) of pseudorabies virus (PRV) induced both antibody and cell-mediated immunity in pigs and provided protection against challenge infection. To determine whether the efficacy of the naked DNA vaccination against PRV could be improved, we compared three sets of variables. First, the efficacy of the naked DNA vaccine coding only for the immunorelevant gD was compared with a cocktail vaccine containing additional plasmids coding for two other immunorelevant glycoproteins, gB and gC. Second, the intramuscular route of vaccination was compared with the intradermal route. Third, the commonly used needle method of inoculation was compared with the needleless Pigjet injector method. Five groups of five pigs were vaccinated three times at 4-weeks intervals and challenged with the virulent NIA-3 strain of PRV 6 weeks after the last vaccination. Results showed that although the cocktail vaccine induced stronger cell-mediated immune responses than the vaccine containing only gD plasmid, both vaccines protected pigs equally well against challenge infection. Intradermal inoculation with a needle induced significantly stronger antibody and cell-mediated immune responses and better protection against challenge infection than intramuscular inoculation. Our data show that the route of administering DNA vaccines in pigs is important for an optimal induction of protective immunity.  相似文献   

11.
Although nasal vaccination has emerged as an interesting alternative to systemic or oral vaccination, knowledge is scarce about the immune responses after such immunization in humans. In the present study, we have compared the kinetics and organ distribution of the antibody responses after nasal and oral vaccination. We immunized female volunteers nasally or orally with cholera toxin B subunit (CTB) and determined the specific antibody levels in serum and nasal and vaginal secretions, as well as the number of circulating antibody-secreting cells, before immunization and 1, 2, 3, 6, and 26 weeks thereafter. Nasal vaccination induced 9-fold CTB-specific immunoglobulin A (IgA) and 56-fold specific IgG antibody increases in nasal secretions, whereas no significant IgA increase was seen after oral vaccination. Both oral and nasal vaccination resulted in 5- to 6-fold CTB-specific IgA and 20- to 30-fold specific IgG increases in vaginal secretions. Strong serum responses to CTB were also induced by both routes of vaccination. A notable difference between nasal and oral vaccination was that the nasal route elicited a specific antibody response with a later onset but of much longer duration than did the oral route. We conclude from this study that the nasal route is superior to the oral route for administering at least nonliving vaccines against infections in the upper respiratory tract, whereas either oral or nasal vaccination might be used for eliciting antibody responses in the female genital tract.  相似文献   

12.
Induction of mucosal and cell-mediated immunity is critical for development of an effective vaccine against human immunodeficiency virus (HIV). We compared intramuscular and intranasal immunizations with a DNA vaccine encoding env of HIV-1 and evaluated the QS-21 saponin adjuvant for augmentation of the systemic and mucosal immune responses to HIV-1 in a murine model. Vaccination via the two routes elicited comparable systemic immune responses, and QS-21 consistently enhanced antigen-specific serum immunoglobulin G2a (IgG2a) production, delayed-type hypersensitivity reaction, and cytolytic activity of splenocytes. Intestinal secretory IgA production and cytolytic activity of the mesenteric lymph node cells are preferentially elicited by intranasal immunization, and QS-21 augmented these activities as well. This adjuvant augmented production of interleukin-2 (IL-2) and gamma interferon (IFN-gamma) associated with decrease in IL-4 synthesis by antigen-restimulated splenocytes. The serum immunoglobulin subtype profile showed a dominant IgG2a response and less strong IgG1 and IgE production in a QS-21 dose-dependent manner. As expected, enhancements of humoral and cell-mediated immune responses by QS-21 were abrogated by treatment with anti-IL-2 and anti-IFN-gamma monoclonal antibodies. These results suggest that the intranasal route of DNA immunization is more efficient than the intramuscular route in inducing mucosal immunity mediated by sIgA and mesenteric lymphocytes. Furthermore, QS-21 is able to act as a mucosal adjuvant in DNA vaccination and demonstrates its immunomodulatory property via stimulation of the Th1 subset. This study emphasizes the importance of the route of immunization and the use of an adjuvant for effective DNA vaccination against HIV-1.  相似文献   

13.
The transfer of maternal antibodies to the offspring and their inhibitory effects on active infant immunization is an important factor hampering the use of certain vaccines, such as measles or respiratory syncytial virus vaccine, in early infancy. The resulting delay in protection by conventional or novel vaccines may have significant public health consequences. To define immunization approaches which may circumvent this phenomenon, experiments were set up to further elucidate its immunological bases. The influence of maternal antibodies on antibody and T cell responses to measles hemagglutinin (MV-HA) were analyzed following MV-HA immunization of pups born to immune or control BALB/c mothers using four different antigen delivery systems: live or inactivated conventional measles vaccine, a live recombinant canarypox vector and a DNA vaccine. High levels (> 5 log10) of maternal anti-HA antibodies totally inhibited antibody responses to each of the vaccine constructs, whereas normal antibody responses were elicited in presence of lower titers of maternal antibodies. However, even high titers of maternal antibodies affected neither the induction of vaccine-specific Th1/Th2 responses, as assessed by proliferation and levels of IFN-gamma and IL-5 production, nor CTL responses in infant mice. On the basis of these unaltered T cell responses, very early priming and boosting (at 1 and 3 weeks of age, respectively) with live measles vaccine allowed to circumvent maternal antibody inhibition of antibody responses in pups of immune mothers. This was confirmed in another immunization model (tetanus toxoid). It suggests that effective vaccine responses may be obtained earlier in presence of maternal antibodies through the use of appropriate immunization strategies using conventional or novel vaccines for early priming.  相似文献   

14.
In this study, we demonstrated that pneumococcal surface protein A (PspA) nasally administered with a nontoxic A subunit mutant of cholera toxin (mCT) S61F elicited a protective immune response. Immunization with PspA and mCT elicited higher levels of PspA-specific IgG and IgA Abs in serum and of IgG and IgA anti-PspA Ab-forming cells in spleens, cervical lymph nodes (CLN), and lung tissue when compared to nonimmunized mice. Furthermore, significant PspA-specific IgA Abs were induced in saliva and nasal secretions. These responses were dependent on the use of mCT as a mucosal adjuvant. The PspA-specific Ab responses induced by mCT S61F were comparable with those induced by native CT (nCT). Analysis of cytokine responses showed that nasal PspA plus mCT S61F enhanced the induction of PspA-specific CD4+ T cells producing IL-4 but not IFN-gamma in CLN at both the protein and mRNA levels. Importantly, significant numbers of mice intranasally immunized with PspA plus mCT S61F were protected from lethal challenge with capsular serotype 3 Streptococcus pneumoniae A66. These results show that intranasal administration of PspA together with mCT S61F is an effective mucosal vaccine against pneumococcal infection and induces CD4+ Th2-type cells, which provide help for both mucosal and systemic Ab responses.  相似文献   

15.
Induction of immune responses in the reproductive tract will be crucial for a functional gamete antigen-based antifertility vaccine. Here we describe the construction and development of an avirulent Salmonella as an oral vaccine delivery vector to elicit sperm-specific immune responses in reproductive tract secretions. A cDNA sequence encoding the human sperm antigen SP10 was cloned on an asd+vector and expressed to a high level in an avirulent delta cya, delta crp, and delta asd vaccine strain of Salmonella typhimurium. Oral immunization of female BALB/c mice with this recombinant Salmonella elicited high-titer anti-SP10 IgG antibodies in serum and IgA antibodies in vaginal secretions. Anti-SP10 antibody titers could be increased by secondary and tertiary oral administrations of the recombinant Salmonella. Induction of sperm-specific antibodies in the reproductive tract following oral administration of a recombinant Salmonella could lead to the development of a simple, safe, efficient, and easy-to-use antifertility vaccine.  相似文献   

16.
The reciprocal regulation of T-helper cell (Th) subsets is widely documented in various animal models of infectious diseases. In this study IFN-gamma/IL-4 double knockout (DKO) mice were used to analyse the role of Th subsets in mucosal immune responses. We found that the DKO mice had normal IgA differentiation but impaired induction of specific gut mucosal antibody responses after oral immunization using cholera toxin adjuvant. Both Th1 and Th2 responses were reduced compared with wild-type mice. Despite the absence of both IFN-gamma and IL-4 in the DKO mice the overall results were similar to previous observations in IFN-gamma receptor-knockout (IFN-gammaR-/-) mice and did not suggest a strict cross-regulation of the two Th subsets in the gut mucosa. To further examine the role of IFN-gamma in mucosal immunity we compared two different mouse strains lacking IFN-gamma, i.e. IFN-gamma-/- (C57BL/6) and IFN-gammaR-/- mice (129/Sv). We found that IFN-gammaR-/- mice exhibited reduced mucosal antibody responses and decreased Th1 and Th2 activity after oral immunization, while IFN-gamma-/- mice had intact antibody responses and increased Th2 responses. Thus, genetic differences were found to critically affect the development of a specific gut mucosal immune response. An enhanced Th2 activity in the Peyer's patches following oral immunization was associated with an ability to mount strong intestinal IgA immunity.  相似文献   

17.
Rotaviruses are responsible for more diarrhoeal disease-associated mortality than any other single agent. Vaccination may therefore hold the key to combating diarrhoeal disease worldwide. Natural immunity to rotavirus infection indicates that rather than protection from reinfection such immunity gives rise to less severe and less frequent attacks of diarrhoea. Early attempts to design a rotavirus vaccine with bovine rotavirus failed because of poor efficacy in some developing countries. Research into rhesus rotavirus, particularly the high-titre rhesus rotavirus tetravalent (RRV-TV) vaccine, has given slightly better results. A stumbling block to truly effective oral vaccines seems to be immunogenicity in developing countries. If efficacy can be ensured by trials in the developing countries, money spent on rotavirus vaccines will be well spent.  相似文献   

18.
Mucosal tissues of mice are enriched in T cells that express the gamma/delta T cell receptor. Since the function of these cells remains unclear, we have compared mucosal immune responses in gamma/delta T cell receptor-deficient (TCRdelta-/-) mice versus control mice of the same genetic background. The frequency of intestinal immunoglobulin (Ig) A plasma cells as well as IgA levels in serum, bile, saliva, and fecal samples were markedly reduced in TCRdelta-/- mice. The TCRdelta-/- mice produced much lower levels of IgA antibodies when immunized orally with a vaccine of tetanus toxoid plus cholera toxin as adjuvant. Conversely, the antigen-specific IgM and IgG antibody responses were comparable to orally immunized control mice. Direct assessment of the cells forming antibodies against the tetanus toxoid and cholera toxin antigens indicated that significantly lower numbers of IgA antibody-producing cells were present in the intestinal lamina propria and Peyer's patches of TCRdelta-/- mice compared with the orally immunized control mice. The selective reduction of IgA responses to ingested antigens in the absence of gamma/delta T cells suggests a specialized role for gamma/delta cells in mucosal immunity.  相似文献   

19.
Recombinant live Mycobacterium bovis BCG strains (rBCG) expressing different human immunodeficiency virus (HIV) or simian immunodeficiency (SIV) antigens could be good candidates for the development of vaccines against AIDS. To develop effective HIV/SIV vaccines, humoral and cellular immune responses directed against multiple antigens may be essential for the control of the infection. In this study we immunized BALB/c mice via different mucosal routes (oral, aerogenic, nasal, and rectal) with a mixture of three rBCG strains expressing, respectively, the entire SIVmac251 Nef protein, and large fragments of the Env and Gag proteins. All routes of immunization studied induced immunoglobulin A (IgA) antibodies against mycobacterial PPD, SIV Env, and SIV Gag antigens in feces and bronchial lavages as well as specific immunoglobulin G (IgG) in serum. Strong, specific cytotoxic responses of splenocytes against Nef, Env, and Gag was observed whatever the mucosal route of immunization. Therefore, mucosal vaccination with a cocktail of rBCG strains induces local, specific IgA, systemic IgG, and systemic CTLs against the three SIV antigens expressed. Rectal and oral routes seemed the most appropriate route of vaccination to be used to protect against SIV infection.  相似文献   

20.
Liposomes appear to be a promising oral antigen delivery system for the development of vaccines against infectious diseases, although their uptake efficiency by Peyer's patches in the gut and the subsequent induction of mucosal immunoglobulin A (IgA) responses remain a major concern. Aiming at targeted delivery of liposomal immunogens, we have previously reported the conjugation via a thioether bond of the GM1 ganglioside-binding subunit of cholera toxin (CTB) to the liposomal outer surface. In the present study, we have investigated the effectiveness of liposomes containing the saliva-binding region (SBR) of Streptococcus mutans AgI/II adhesin and possessing surface-linked recombinant CTB (rCTB) in generating mucosal (salivary, vaginal, and intestinal) IgA as well as serum IgG responses to the parent molecule, AgI/II. Responses in mice given a single oral dose of the rCTB-conjugated liposomes were compared to those in mice given one of the following unconjugated liposome preparations: (i) empty liposomes, (ii) liposomes containing SBR, (iii) liposomes containing SBR and coadministered with rCTB, and (iv) liposomes containing SBR plus rCTB. Three weeks after the primary immunization, significantly higher levels of mucosal IgA and serum IgG antibodies to AgI/II were observed in the rCTB-conjugated group than in mice given the unconjugated liposome preparations, although the latter mice received a booster dose at week 9. The antibody responses in mice immunized with rCTB-conjugated liposomes persisted at high levels for at least 6 months, at which time (week 26) a recall immunization significantly augmented the responses. In general, mice given unconjugated liposome preparations required one or two booster immunizations to develop a substantial anti-AgI/II antibody response, which was more prominent in the group given coencapsulated SBR and rCTB. These data indicate that conjugation of rCTB to liposomes greatly enhances their effectiveness as an antigen delivery system. This oral immunization strategy should be applicable for the development of vaccines against oral, intestinal, or sexually transmitted diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号