首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Formulations of the drug Fluconazole with different release characteristics were prepared by dispersing the active pharmaceutical ingredient (API) in various polymeric carriers, and especially in polymer blends. Fluconazole was tested as a model drug with low solubility in water. First solid dispersions in pure polymers were studied. Use of pure polyvinylpyrrolidone (PVP) as carrier even for high drug load (30 wt%) resulted in rapid release. The drug release rates decreased by increasing the API content. The dissolution rate enhancement was attributed to drug amorphization, particle size reduction, and possible improvement of the drug wetting characteristics. Hydroxypropyl methylcellulose (HPMC) gave solid dispersions, from which the release rates of the drug varied from immediate to sustaining. As the drug amount increased, the rates became higher. Similar behavior also was found when Chitosan was used as carrier, with much more controlled rates close to those for sustained release. These differences were mainly attributed to the limited solubility and swelling of HPMC and Chitosan in aquatic media. To study the effectiveness of polymer blends in adjusting the release rates of the drug, solid dispersions in PVP/HPMC and PVP/Chitosan miscible blends were studied. The release rates of Fluconazole were adequately adjusted by differentiating the weight ratio of the polymers in the blends. PVP/HPMC blends with high PVP content can be used for immediate release formulations but PVP/Chitosan blends are inappropriate for such formulations and can only be used for controlled release.  相似文献   

2.
Semi-interpenetrating polymer network (IPN) microspheres of chitosan and poly(ethylene glycol) PEG were prepared for controlled release of drugs. A new method for the chemical crosslinking of chitosan microspheres containing isoniazid (INH) as a model drug is proposed and evaluated. The method consists of the exposure of microspheres to the vapor of crosslinking agent that act in gaseous phase under mild conditions. The structural analysis of the microspheres was carried out by FTIR-analysis. The swelling behavior, hydrolytic degradation, structural changes of the microspheres and loading capacity (LC) of the microspheres for INH were investigated. The prepared microspheres have shown 93% drug loading capacity, which suggested that these semi-IPN microspheres are suitable for controlled release of drugs in an oral sustained delivery system. © 2001 Kluwer Academic Publishers  相似文献   

3.
Sericin and alginate blend has shown good results for obtaining sustained release dosage forms. In the case of ketoprofen, it was necessary to resort to the use of the proanthocyanidin (PA) as crosslinking agent in order to achieve this same goal. Thus, various formulations were developed by adding different initial amounts of PA to the sericin and alginate blend with incorporated ketoprofen. The best results for drug loading, entrapment efficiency and release prolongation were obtained for the particle with the lowest amount of PA (0.5%). Mathematical modeling has indicated that different mechanisms may be involved in drug release, especially a complex release mechanism, with polymer dissolution and polymer chain relaxation allowing drug release. Particles characterization confirmed the incorporation of ketoprofen into the sericin, alginate and proanthocyanidin blend. It was verified that there was no interaction between them and there were no major changes in the physicochemical properties of the drug.  相似文献   

4.
A heterocyclic methacrylate polymer system, developed originally as a low shrinkage polymer system, has been investigated as a drug release polymer and as a biomaterial for encouraging bone or cartilage regeneration. The system is based on poly (ethyl methacrylate) polymer powder mixed with tetrahydrofurfuryl methacrylate monomer and polymerized at room temperature (PEM/THFM). Promising results have been obtained with this biomaterial, and hence its water uptake properties were investigated in detall, in order to throw some light on the release processes that are involved in vivo and in vitro. Water soluble large molecule analogues were incorporated into the system; these additives increased the water uptake of the system. Isobornyl methacrylate was used as a diluent for the monomer to further reduce the water uptake of the system. In all cases the uptake kinetics did not obey simple diffusion theory, the process being very prolonged and complex.  相似文献   

5.
Drug release characteristics of freeze-dried wafers and solvent-cast films prepared from sodium carboxymethylcellulose have been investigated and compared. In vitro drug dissolution studies were performed using an exchange cell and drug release was measured by UV spectroscopy at 272?nm using distilled water. The dissolution profiles of hydrochlorothiazide from the wafers and films were compared by determining the rates of drug release, estimated from the % release versus time profiles and calculating their difference (f(1)) and similarity (f(2)) factors. The effects of drug loading, polymer content and amount of glycerol (GLY) (films) on the drug release characteristics of both formulations were investigated. Both the wafers and films showed sustained type release profiles that were best explained by the Korsmeyer-Peppas equation. Changes in the concentration of drug and GLY (films) did not significantly alter the release profiles whilst increasing polymer content significantly decreased the rate of drug release from both formulations. The rate of release was faster from the wafers than the corresponding films which could be attributed to differences in the physical microstructure. The results show the potential of employing both formulations in various mucosal drug delivery applications.  相似文献   

6.
The in vitro degradation of biodegradable polymer/ceramic composites was assessed in two different environments under both static and pseudodynamic conditions. The blends, consisting of polycaprolactone, poly(lactic-co-glycolic acid), and hydroxyapatite, have potential use in bone tissue engineering applications, thus it is essential to establish a standardized method of characterizing the degradation of new biomaterials. In this study, the variation in polymer blend ratio was examined to observe a change in degradation rate. The porous blends were degraded in water and serum-containing media. A previous study examined in vitro degradation in serum-free buffer. Molecular weight loss, gravimetric weight loss, pH changes and morphological changes were evaluated. The changes in porosity were observed with scanning electron microscopy and quantitatively assessed using image analysis. There was a significant difference in molecular weight loss and gravimetric weight loss between the blends after 10 weeks in vitro. Blends containing the greatest amount of poly(lactic-co-glycolic acid) degraded most rapidly. © 2001 Kluwer Academic Publishers  相似文献   

7.
The objective was to investigate the potential of polymer molecular weight (MW) and polymer blends for the control of drug release from in situ gelling nasal inserts prepared by lyophilization of solutions of model drugs (oxymetazoline HCl, diprophyllin) and polymers. Drug release, polymer solution viscosity, water uptake and mass loss, mechanical properties, and bioadhesion potential were measured. Sonication was effective to reduce the viscosity/polymer MW of carrageenan solutions. Nasal inserts prepared from sonicated carrageenan showed an insignificant reduction in water uptake with sonication time and no disintegration of the gel matrix. In contrast, inserts of different MW Na-alginates revealed a reduced water uptake and an increased mass loss with lower MW. Inserts prepared from carrageenan/low MW Na-alginate blends took up more water at a higher low MW Na-alginate content. Sonicated carrageenan inserts released oxymetazoline HCl independent of the sonication time and diprophyllin with only a slight reduction in the release rate. Release of both drugs from Na-alginate inserts was slow from high MW inserts because no insert dissolution occurred. Increasing the Na-alginate content of inserts prepared from polymer blends accelerated the drug release enabling release rates over a broad range. The bioadhesion potential of Na-alginate inserts was strongly reduced for the low MW grades because of dissolution of the inserts. Xanthan gum and Carbopol 971 blended with Na-alginate formed inserts with poor bioadhesion. The use of polymer blends to control the drug release from nasal inserts was superior to the use of polymers of different MW.  相似文献   

8.
Oral osmotic delivery systems containing polyethylene oxide (PEO, a water-swellable polymer) were designed and the release of cyclobenzaprine hydrochloride (model drug) from the devices was investigated. The systems consisted of model drug, mannitol (osmotic agent), and increasing amounts of PEO surrounded by a semipermeable membrane drilled with a delivery orifice. There was a decrease in drug release rate with PEO in the core. This may be due to solubility-modulating properties of the polymer. Visual inspection of the devices with PEO showed significant swelling during dissolution testing. Swelling (internal pressure) may influence water imbibition rate into the core and subsequently drug release rate. The release rates were a function of membrane thickness. The release rates were independent of orifice size (range of 150-510 μm diameter) and hydrodynamic conditions for the devices. This would be advantageous in the delivery of drugs in man.  相似文献   

9.
Gliclazide (GLZ)-loaded microparticles made with a polymeric blend were prepared by a solvent evaporation technique. Organic solutions of two polymers, poly(?-caprolactone) (PCL) and Eudragit RS (E RS) or ethyl cellulose (EC), in different weight ratios, and 33.3% of GLZ were prepared and dropped into aqueous solution of poly vinyl alcohol, in different experimental conditions, achieving drug-loaded microparticles. The obtained microparticles were characterized in terms of yield of production, shape, size, surface properties, drug content, and in vitro drug release behavior. The physical state of the drugs and the polymer was determined by scanning electron microscopy (SEM), Fourier transform infra red and differential scanning calorimetry. Following the in vitro release studies microparticles made from blends of polymer, PCL/E RS or EC showed slower drug release than microparticles made from single PCL polymer. Surface morphology also revealed presence of porous and spherical structure of microparticles. Microparticles showing sustained release of GLZ were examined in rabbits and plasma GLZ concentrations were calculated using HPLC method of assay.  相似文献   

10.
The objective was to investigate the potential of polymer molecular weight (MW) and polymer blends for the control of drug release from in situ gelling nasal inserts prepared by lyophilization of solutions of model drugs (oxymetazoline HCl, diprophyllin) and polymers. Drug release, polymer solution viscosity, water uptake and mass loss, mechanical properties, and bioadhesion potential were measured. Sonication was effective to reduce the viscosity/polymer MW of carrageenan solutions. Nasal inserts prepared from sonicated carrageenan showed an insignificant reduction in water uptake with sonication time and no disintegration of the gel matrix. In contrast, inserts of different MW Na-alginates revealed a reduced water uptake and an increased mass loss with lower MW. Inserts prepared from carrageenan/low MW Na-alginate blends took up more water at a higher low MW Na-alginate content. Sonicated carrageenan inserts released oxymetazoline HCl independent of the sonication time and diprophyllin with only a slight reduction in the release rate. Release of both drugs from Na-alginate inserts was slow from high MW inserts because no insert dissolution occurred. Increasing the Na-alginate content of inserts prepared from polymer blends accelerated the drug release enabling release rates over a broad range. The bioadhesion potential of Na-alginate inserts was strongly reduced for the low MW grades because of dissolution of the inserts. Xanthan gum and Carbopol 971 blended with Na-alginate formed inserts with poor bioadhesion. The use of polymer blends to control the drug release from nasal inserts was superior to the use of polymers of different MW.  相似文献   

11.
This study reports drug-loaded silk sericin (SS)/silk fibroin (SF) blend microparticles being fabricated by the water-in-oil emulsion solvent diffusion of a SS/SF aqueous blend solution. Blue dextran was used as the water-soluble drug model. The influence of the SS/SF blend ratio on the characteristics and drug release behavior of the blend microparticles was investigated. The blend microparticles were analyzed by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and UV-vis spectroscopy. The blend microparticles were nearly spherical in shape as determined from SEM micrographs. The FTIR and TG results demonstrated that interactions between SS and SF molecules had occurred. The blend microparticles showed very high drug loading efficiency (94–98%) for all blend ratios. The in vitro drug release significantly decreased with decreasing SS blend ratio. The results demonstrated that the SS/SF blend microparticles could be used as biocompatible and biodegradable microparticles for controlled release drug delivery applications.  相似文献   

12.
In this work, the drug loading and in vitro release properties of PLGA-mPEG nanoparticles were studied. Three methyl-xanthine derivatives differing significantly in aqueous solubility, i.e., caffeine, theophylline, and theobromine, were employed as model drugs. Two different PLGA-mPEG copolymer compositions, namely PLGA(40)mPEG(5) and PLGA(136)mPEG(5), were included in the study. The nanoparticles were prepared by a double emulsion technique. The drug release properties of the nanoparticles in phosphate buffered saline (PBS) and in human plasma were determined. An increase of the drug proportion in the feed led to increased drug loading. The composition of the PLGA-mPEG copolymer (PLGA/mPEG molar ratio) did not appear to affect drug loading and encapsulation. Caffeine exhibited higher loading in the nanoparticles than theobromine and this exhibited a little higher loading than theophylline. Solid-state solubility of the drug in PLGA-mPEG did not affect drug loading. Drug loading and encapsulation in the PLGA-mPEG nanoparticles appeared to be governed by the partition coefficient of the drug between the organic phase and the external aqueous phase employed in nanoparticle preparation. Relatively low loading and encapsulation values were obtained, suggesting that the physical entrapment of drugs in PLGA-mPEG nanoparticles could only be an option in the development of formulations of potent drugs. Only the release of the least water-soluble theobromine was efficiently sustained by its entrapment in the nanoparticles, indicating that the physical entrapment of drugs provides the means for the development of controlled-release PLGA-mPEG nanoparticulate formulations only in the case of drugs with low aqueous solubility.  相似文献   

13.
Formulations of the drug Fluconazole with different release characteristics were prepared by dispersing the active pharmaceutical ingredient (API) in various polymeric carriers, and especially in polymer blends. Fluconazole was tested as a model drug with low solubility in water. First solid dispersions in pure polymers were studied. Use of pure polyvinylpyrrolidone (PVP) as carrier even for high drug load (30 wt%) resulted in rapid release. The drug release rates decreased by increasing the API content. The dissolution rate enhancement was attributed to drug amorphization, particle size reduction, and possible improvement of the drug wetting characteristics. Hydroxypropyl methylcellulose (HPMC) gave solid dispersions, from which the release rates of the drug varied from immediate to sustaining. As the drug amount increased, the rates became higher. Similar behavior also was found when Chitosan was used as carrier, with much more controlled rates close to those for sustained release. These differences were mainly attributed to the limited solubility and swelling of HPMC and Chitosan in aquatic media. To study the effectiveness of polymer blends in adjusting the release rates of the drug, solid dispersions in PVP/HPMC and PVP/Chitosan miscible blends were studied. The release rates of Fluconazole were adequately adjusted by differentiating the weight ratio of the polymers in the blends. PVP/HPMC blends with high PVP content can be used for immediate release formulations but PVP/Chitosan blends are inappropriate for such formulations and can only be used for controlled release.  相似文献   

14.
The experimental characterisation of electrospun poly(lactic acid) (PLA):poly(ε-caprolactone) (PCL) as drug carriers, at five blend ratios from 1:0, 3:1, 1:1, 1:3 and 0:1, was holistically investigated in terms of their morphological structures, crystallinity levels and thermal properties. A widely used antibiotic tetracycline hydrochloride (TCH) was loaded to prepared fibrous mats at TCH concentrations of 1 and 5 wt%. The additional TCH into PLA:PCL better facilitates the reduction of fibre diameter than polymer blends. Increasing the TCH concentration from 1 to 5 wt% was found to result in only a modest decrease in the crystallinity level, but a significant increase in the crystallisation temperature (T c) for PLA within PLA:PCL blends. The infrared spectra of fibre mats confirm the successful TCH encapsulation into fibrous networks. The first order and Zeng models for drug release kinetics were in better agreement with experimental release data, indicating the release acceleration of TCH with increasing its concentration. In a typical case of PLA:PCL (1:1) loaded with 5 wt% TCH, the fibre mats apparently demonstrate more wrinkled and floppy structures and increased fibre diameters and decreased inter-fibrous spaces after 7-day in vitro fibre degradation, as opposed to those obtained after 3-h degradation.  相似文献   

15.
We examine the characteristics and functionality of conjugated polymer thin films, based on blends of poly(9,9-dioctylfluorene-2,7-diyl-co-bis-N,NN′-(4-butylphenyl)-bis-N,N′-phenyl-1,4-phenylenediamine) (PFB) and poly(9,9-dioctylfluorene-2,7-diyl-co-benzothiadiazole) (F8BT), using a spray-coating deposition technique suitable for large areas. The morphological properties of these blend films are studied in detail by atomic force microscopy (AFM) methods, showing that favourable results, in terms of layer deposition rate and uniformity, can be achieved using a 5:1 blend of o-dichlorobenzene and chlorobenzene as the solvent medium. A photoluminescence quenching efficiency of above 80 % is also observed in such blend films. As a feasibility study, prototypical photovoltaic devices exhibit open circuit voltages of up to 1.0 V under testing, and solar power conversion efficiencies in the 0.1–1 % order of magnitude; metrics which are comparable with those reported for spin-coated cells of the same active blend and device architecture.  相似文献   

16.
The release of metoclopramide hydrochloride (very water soluble cationic drug) and diclofenac sodium (sparingly soluble anionic drug) from pellets coated with hydroxypropylmethylcellulose (HPMC; water-soluble polymer) or ethylcellulose aqueous dispersion (Surelease; water-insoluble polymer) at different coating loads was investigated. The release rates of either drug decreased as the coating load of HPMC increased, but overall, the release was fast, and the majority of both drugs released in about 1 hr, even at the highest coating load. The drug release mechanism for either drug was not affected by the coating load of HPMC or by the type of drug used, and it was found to be mainly diffusion controlled. Diclofenac sodium released slightly more slowly than metoclopramide hydrochloride from HPMC-coated pellets. This was attributed to the lower water solubility of the former drug. The release rate of either drug decreased greatly as the coating load of Surelease increased. The release of both drugs was sustained over 12 hr as the coating load of Surelease increased, and only about 70% of either drug was released after this period at the highest coating load (20%). The mechanism of release of metoclopramide hydrochloride was independent of coating load, and it was predominantly diffusion controlled. However, the mechanism of diclofenac sodium release was dependent on the coating load of Surelease. At low coating loads, diffusion of drug was facilitated due to the presence of more pores at the surface of the coated pellets; therefore, the rate of dissolution of the drug particles was the rate-limiting step. However, at high coating loads, drug release was mainly diffusion controlled. Despite its lower water solubility, diclofenac sodium released slightly faster than metoclopramide hydrochloride from Surelease-coated pellets at equivalent coating loads.  相似文献   

17.
Poly(ethylene oxide)-b-poly(propylene oxide)-b-(polyethylene oxide)-g-poly(acrylic acid), a graft-comb copolymer of Pluronic 127 and poly(acrylic acid) (Pluronic-PAA), was explored as an excipient for tablet dosage form of camptothecin (CPT). The tablets were prepared by either direct compression of the drug-polymer physical blend, suspension in ethanol followed by evaporation, or compression after kneading and characterized with respect to their physical structures, drug stability, and release behavior. Porosity and water uptake rate were strongly dependent on the fabrication procedure, ranking in the order: direct compression of physical blend > compression after suspension/evaporation in ethanol > compression after kneading. Tablets prepared by compression of physical blends swelled in water with a rapid surface gel layer formation that impeded swelling and disintegration of the tablets core. These tablets were able to sustain the CPT release for a period of time longer than those observed with the tablets made by either suspension/evaporation or kneading, which disintegrated within a few minutes. Despite the tablet disintegration, the CPT release was impeded for at least 6 hr, which was attributed to the ability of the Pluronic-PAA copolymers to form micellar aggregates at the hydrated surface of the particles. Physical mixing did not alter the fraction of CPT being in the pharmaceutically active lactone form, whilst the preparation of the tablets by the other two methods caused a significant reduction in the lactone form content. Tablets prepared from the physical blends demonstrated CPT release rates increasing with the pH due to the PAA ionization leading to the increase in the rate and extent of the tablet swelling. The results obtained demonstrate the potential of the Pluronic-PAA copolymers for the oral administration of chemotherapeutic agents.  相似文献   

18.
Transmission electron microscopy (TEM) is the main technique used to investigate the spatial distribution of clay platelets in polymer nanocomposites, but it has not often been successfully used in polymer blend nanocomposites because the high contrast between polymer phases impairs the observation of clay platelets. This work shows that electron spectral imaging in energy-filtered TEM (EFTEM) in the low-energy-loss spectral crossover region allows the observation of platelets on a clear background. Separate polymer domains are discerned by imaging at different energy losses, above and below the crossover energy, revealing the material morphology. Three blends (natural rubber [NR]/poly(styrene-butyl acrylate) [P(S-BA)], P(S-BA)/poly(vinyl chloride) [PVC], and NR/starch) were studied in this work, showing low contrast between the polymer phases in the 40-60 eV range. In the NR/P(S-BA) and P(S-BA)/PVC blend nanocomposites, the clay platelets accumulate in the P(S-BA) phase, while in the P(S-BA)/PVC nanocomposites, clay is also found at the interfaces. In the NR/starch blend, clay concentrates at the interface, but it also penetrates the two polymer phases. These observations reveal that nanostructured soft materials can display complex morphochemical patterns that are discerned thanks to the ability of EFTEM to produce many contrast patterns for the same sample.  相似文献   

19.
The purpose of this study was to synthesize new water-soluble ampholytic copolymers consisting of tertiary amine and carboxylic acid pendent groups for oral drug carriers. The polymers were prepared with a 1:1 molar ratio of dimethylaminoethyl methacrylate and methacrylic acid by free radical polymerization. After polymerization, polymer rods were recovered, dissolved (or swollen) in de-ionized water, and freeze-dried before obtaining fine powders. Drug release experiments with various drugs, representing a variety of drug solubility and types of amine, were carried out with compressed tablets (total weight of 600 mg) containing a variety of basic drugs in pH's of 1.5 and 7. Surprisingly, zero-order release kinetics even from a tablet geometry has been obtained with drug loading ranging from 20-50%. Drug release in pH 7 maintains a zero-order rate up to 80-85% release after a slight initial burst, whereas in pH 1.5 one may not find the initial burst and zero-order kinetics is extended up to 90-95% release. Drug release becomes faster in pH 1.5 than pH 7 due to the faster rate of protonation of the tertiary amine in acidic conditions. The release of basic drugs in pH 1.5 is not significantly different even with varying solubility and types of amine (primary, secondary, and tertiary). However, different drug release profiles in pH 7 are observed with different types of amine and solubility.  相似文献   

20.
We have investigated phase structure – properties relationships of polycarbonate (PC) + a polymer liquid crystal (PLC) blends processed in a twin-screw extruder at several conditions. The PLC is PET/0.82 PHB – a copolyester of poly(ethylene terephtalate) and p -hydroxybenzoic acid. For comparison the blend was additionally extruded in a wide range of shear rates in a capillary rheometer at two different spinning rates and compression-molded. The blend processed in the rheometer exhibits lower values of modulus and tensile strength than the blend extruded due to destruction of the initial orientation and dispersion level gained during extrusion. The orientation of PLC-rich islands increases up to the shear rate of 50–100 s–1, whereas deformation at higher shear rates exhibits a droplet–breakup phenomenon, confirmed by SEM micrographs. The rheological measurements (oscillation mode) evidence a high shear thinning of the PLC. By contrast, the influence of the deformation rate on the viscosity for PC and the blend is negligible, suggesting also a low interaction level in the interfacial area. This conclusion was confirmed by dynamic mechanical measurements. As expected, our experiments prove that structure and properties of the blend are affected by processing (shear and elongation) conditions. Increasing shear rate leads to elongation of dispersed domains but exceeding critical values can lead to droplet breakup and destruction of created structure. The unique morphology created during extrusion can be destroyed during additional processing (in rheometer). Formation of fibrils is also dependent on additional treatment – spinning speed. Optimized spinning speed can lead to 50% increase in stiffness of the blend. Electronic Publication  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号