首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fracture toughness measurement at cryogenic temperatures using chevron notched specimens  相似文献   

2.
Rock dynamic fractures are common in many geophysical processes and engineering applications. Characterization of rock dynamic fracture properties such as the initiation fracture toughness, the fracture energy, and the fracture velocity, is thus of great importance in rock mechanics. A novel method is proposed in this work to measure dynamic Mode-I rock fracture parameters using a cracked chevron notched semi-circular bend (CCNSCB) specimen loaded by a split Hopkinson pressure bar (SHPB) apparatus. A strain gauge is mounted on the sample surface near the chevron notch to detect the fracture onset, and a laser gap gauge (LGG) is used to monitor the crack surface opening distance (CSOD) during the dynamic test. With dynamic force balance achieved in the tests, the stable–unstable transition of the crack propagation crack is observed and the initiation fracture toughness is calculated from the dynamic peak load. The average dynamic fracture energy as well as the fracture propagation toughness are calculated based on the first law of thermodynamics. The measured dynamic fracture properties of Laurentian granite using CCNSCB method are consistent with those reported in the literature using other methods.  相似文献   

3.
4.
This paper gives a theoretical approach to the general problem of the static fracture resistance in the presence of stress concentrations. First of all, an approaching calculation model is proposed for elastic and plastic stress in the reduced section of a circumferentially notched cylindrical bar. The introduction of a normal stress criterion or of an axial strain fracture criterion on the elastic plastic interface makes it possible to explain the experimental results covering the fracture of various steels above a certain sharpness.  相似文献   

5.
This paper describes an elastic-plastic stress analysis for a double edge notched tension specimen, a specimen used for the determination of the microscopic cleavage fracture stress. The analysis was performed numerically using the finite element method. First, a study of the finite element modelling is presented in order to demonstrate the requirements on a three-dimensional finite element structure leading to accurate stress distributions in the whole specimen. On the other hand possible restrictions are shown, if only a certain parameter, e.g. the maximum tensile stress has to be evaluated. Then the global response of the three-dimensional structure is compared with results of two-dimensional calculations assuming plane stress and plane strain, respectively. Subsequently the most interesting stress and strain distributions are discussed. The maximum value of stress concentration in front of the notch is given as a function of the applied stress. Additionally the state of deformation at fracture load is characterized by the plastic zone size, too. All three-dimensional results are compared with results of a plane strain model.  相似文献   

6.
The cracked chevron notched Brazilian disc (CCNBD) specimen has been suggested by the International Society for Rock Mechanics to quantify mode I fracture toughness (KIc) of rock, and it has also been applied to mode II fracture toughness (KIIc) testing in some research on the basis of some assumptions about the crack growth process in the specimen. However, the KIc value measured using the CCNBD specimen is usually conservative, and the assumptions made in the mode II test are rarely assessed. In this study, both laboratory experiments and numerical modeling are performed to study the modes I and II CCNBD tests, and an acoustic emission technique is used to monitor the fracture processes of the specimens. A large fracture process zone and a length of subcritical crack growth are found to be key factors affecting the KIc measurement using the CCNBD specimen. For the mode II CCNBD test, the crack growth process is actually quite different from the assumptions often made for determining the fracture toughness. The experimental and numerical results call for more attention on the realistic crack growth processes in rock fracture toughness specimens.  相似文献   

7.
A generalized methodology has been outlined in this paper for estimating the minimum normalized stress intensity factor (Y*min) of chevron notched round bar specimens, subjected to three‐point bend loading. Using such specimens, a series of fracture toughness tests have been carried out for the first time on two steels. The major inferences drawn from this investigation are: (i) reproducible fracture toughness values can be achieved using chevron notched rod specimens of identical configuration and (ii) the estimated magnitudes of fracture toughness obtained by using chevron notched rod specimens are in good agreement with those achieved by using chevron notched rectangular bar specimens of the same material.  相似文献   

8.
Stress intensity factor formulas and dimensionless compliance formula of chevron-notch three point bend specimen obtained by use of straight-through-crack assumption (STCA) and Bluhm's slice model have been presented. Two stress intensity factor coefficient formulas have been compared with the experimental data of GCr 15 bearing steel. The comparison has shown that the formula obtained using slice model is in better agreement with experimental data. The plane-strain fracture toughness measurements by chevron-notch specimen and by ASTM E399 standard method have been compared and are in agreement. The effect of slot width of chevron notch on the measurements has been studied.  相似文献   

9.
This paper revisits a complicated analytical solution of the stress intensity factor K adopted in a newly published British standard BS 8571:2014 for clamped single edge notched tension (SENT) specimens. Comparison with existing numerical results of K shows that the analytical K solution in BS 8571 is correct only for the crack length to specimen width ratio a/W ≤ 0.6, but incorrect for a/W > 0.6. A reinvestigation is thus performed using the crack compliance method, and a corrected K solution is obtained for the BS 8571 clamped SENT specimens over the full range of a/W. On this basis, a simple closed‐form solution of K is obtained using the best curve fitting with an accuracy within 1% for crack sizes up to a/W = 0.98. Results show that the proposed closed‐form solution of K agrees well with the numerical results of K for the clamped SENT specimens.  相似文献   

10.
In the present study, a novel approach is presented to obtain closed-form solutions for the geometry factors, which are used to determine the stress intensity factors for various configurations. A single edge notched tension specimen with an angled-crack is used as an example to demonstrate the applicability, simplicity and flexibility of the new approach. Several values for crack inclination angles, plate widths and crack lengths, including micro-cracks, are considered in the analysis. The new approach is validated through comparison with existing analytical and numerical solutions as well as experimental results.  相似文献   

11.
To describe fracture toughness diagrams of notched bodies, a model of the cohesion zone near the notch root and an averaging criterion of stresses in this zone were employed. The geometric stress concentration factor and biaxiality coefficient affect greatly the shape of fracture toughness diagram. The notch root critical stress intensity factor is a decreasing function of geometric stress concentration factor. __________ Translated from Problemy Prochnosti, No. 5, pp. 142–148, September–October, 2006. Report on International Conference “Dynamics, Strength, and Life of Machines and Structures” (1–4 November 2006, Kiev, Ukraine).  相似文献   

12.
13.
14.
The cracking behavior of Ni-based heat-resisting alloy was investigated in a vacuum environment at 1073 K using the double-edged notch specimens, with varying the stress-holding time Th and the stress-rising time Tr during the cycle. The results showed that the crack initiation was only time-dependent regardless of Tr and Th. The stress-rising time in the creep-fatigue mode had only a pausing effect against the creep damage because the crack initiation time in the fatigue mode was much longer than that in the creep mode. Although the crack growth was also time-dependent in the fatigue mode of Tr ≧ 6 s, it was rather cyclic-dependent in the fatigue mode of Tr = 1 s. As long as the crack initiation or growth is only time-dependent, the life of the crack initiation or growth can be evaluated by a single parameter of Th/Tr, in the trapezoidal load wave.  相似文献   

15.
In this paper, a notch analysis model is presented for the numerical prediction of multiaxial strains of a notched 1070 steel specimen under combined axial and torsion loadings. The proposed model is based on the notion of a structural yield surface and uses a small-strain cyclic plasticity model to describe stress–strain relations. A notch load–strain curve is calculated with Neuber’s rule and incremental nonlinear finite element analysis. The presented model is applied to simulate the notch root deformations of a circumferentially notched specimen under cyclic tension–compression–torsion loading histories. The model predictions are evaluated with strain measurements at the notch root of the specimen in a comprehensive set of cyclic tests. The computed strain loops were in accord with experimental data and matched qualitatively with measured shear–axial strain histories irrespective of loading path of the test. In proportional balanced torsion-axial loading, the nonlinear shear strain–axial strain loops were calculated properly. The modeling errors were determined to be a function of the loading path shape, and compared to shear strains, axial strain predictions were more accurate.  相似文献   

16.
Idealized random grains separated by pseudo grain boundaries were generated by using Voronoi tessellation to simulate the polycrystalline microstructure. Combined with finite element analyses, this approach made it possible to addressing crack initiation and progressive failure due to crack growth in notched bar geometries of P92 steel at high temperature. The calculations provided good predictions for creep rupture lives of notched specimen with different notch radii and external stress. Simultaneously, irregular crack growth shape, intergranular crack mode, and wedge cracks at triple grain interaction were captured in the model. The crack initiation positions were found to be influenced by notch radius and applied stress causing high stress triaxiality at the subgrain level. Furthermore, the preferential crack growth directions were changed as the notch varied from sharp to blunt.  相似文献   

17.
The chevron notched three-point bend test specimen is often used for measuring the fracture toughness of brittle materials such as ceramics. Specimen sizes are often very restricted when testing advanced materials due to limited volume of material available or high material costs. Since the minimum chevron notch width is limited by the size of the cutting wheels or wire saw used to produce it, as the sample size gets small enough, the notch width becomes large in relation to the sample size. It is shown via finite element analysis that the notch width has an important effect on the stress intensity factors of short cracks. The minimum in the normalized stress intensity factor versus crack length is lost, rendering the usual analysis of the experimental results invalid and contributing greatly to decreased fracture stability of such specimens. Previous analytical and numerical studies do not take into account the width of the chevron notch. Based on the calculations, a guideline to permissible notch widths is introduced. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
19.
20.
The brittle fracture behaviour and plastic deformation of round-notched polycarbonate bars subjected to three-point bending under hydrostatic pressure have been studied. Below a certain critical pressure, the brittle fracture initiated from an internal craze nucleated at the tip of the local plastic zone ahead of the notch rooT. The position of the nucleation of the craze receded from the tip of the notch with increasing applied pressure. When the pressure was increased over a critical value, general yielding occurred by passage of the plastic zone across the notched cross-section, that is, the brittle to ductile transition took place. A qualitative analysis of the stress distribution within the plastic zone explains that the brittle to ductile transition under hydrostatic pressure occurs when the general yield takes place before a critical stress for brittle crack propagation is reached.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号