首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes the design, fabrication, and measurement of a wideband 60 GHz monolithic microwave integrated circuit (MMIC) power amplifier that has demonstrated via on-wafer continuous wave (CW) measurement a record 43% power-added efficiency (PAE) at an associated output power of 224 mW and 7.5 dB of power gain. At a higher drain bias of 3.5 V, the CW output power increased to 250 mW with 38.5% PAE. Additional performance improvement is expected when the MMICs are tested on-carrier with proper heat sinking. These state-of-the-art first-pass design results can be attributed to: 1) the use of a fully selective gate recess etch 0.12-μm InP HEMT process fabricated on 2-mm-thick 3-in diameter InP substrates with slot via holes; 2) a design based on a novel on-wafer load-pull measurement technique; and 3) an accurate large-signal nonlinear model for InP HEMTs. In order to reach the low cost required for mass production, the same MMIC design was fabricated on an InP metamorphic HEMT (MHEMT) process. The MHEMT version of the MMIC demonstrated 41.5% PAE, with an associated output power of 183 mW (305 mW/mm) and 6.9 dB of power at 60 GHz when measured CW on-wafer. These InP HEMT and MHEMT results are, to our knowledge, the highest PAE and power bandwidth ever reported at V-band  相似文献   

2.
This work describes the design and nonlinear modeling of two V-band monolithic microwave integrated circuit (MMIC) power amplifiers using a nonlinear high electron mobility transistor (HEMT) model developed specifically for very short gate length pseudomorphic HEMTs (PHEMTs). Both circuits advance the state-of-the-art of V-band power MMIC performance. The first, a single-ended design, produced 293 mW of output power with a record 26% power-added efficiency (PAE) and 9.9 dB of power gain at 62.5 GHz when measured on-wafer. The second MMIC, a balanced design with on-chip input and output Lange couplers for power combining, generated a record 564 mW of output power (27.5 dBm) with 21% PAE and 9.8 dB power gain. The MMIC's are passivated, thinned to 2 mils, and down-biased to 4.5 V for high reliability space applications. These excellent first-pass MMIC results are attributed to the use of an optimized 0.1-/μm PHEMT cell structure and a design based on millimeter-wave on-wafer device characterization, together with a new and very accurate large signal analytical FET model developed for 0.1-/μm PHEMTs  相似文献   

3.
In this paper, we report on the development of W-band monolithic microwave integrated circuit (MMIC) power amplifiers using 0.1-μm AlInAs/GaInAs/InP high electron mobility transistor (HEMT) technology and finite-ground coplanar waveguide (FGCPW) designs. In the device modeling, the Angelov nonlinear HEMT model was employed to predict the large signal performance of the device, and the results were validated by using state-of-the-art vector load-pull measurements. A two-stage single-ended W-band FGCPW MMIC using a 150-μm-wide HEMT as the driver and a 250-μm-wide HEMT for the output stage was designed, fabricated, and tested. The MMIC amplifier demonstrates a maximum output power of 18.6 dBm with 18.2% power-added efficiency and 10.6 dB associated gain at 94 GHz. This result is the best output power to date reported from an InP-based MMIC using FGCPW design at this frequency  相似文献   

4.
A wideband MMIC power amplifier at W-band is reported in this letter. The four-stage MMIC, developed using 0.1 μm GaAs pseudomorphic HEMT (PHEMT) technology, demonstrated a flat small signal gain of 12.4±2 dB with a minimum saturated output power (Psat) of 14.2 dBm from 77 to 100 GHz. The typical Psat is better by 16.3 dBm with a flatness of 0.4 dB and the maximum power added efficiency is 6% between 77 and 92 GHz. This result shows that the amplifier delivers output power density of about 470 mW/mm with a total gate output periphery of 100 μm. As far as we know, it is nearly the best power density performance ever published from a single ended GaAs-based PHEMT MMIC at this frequency band.  相似文献   

5.
A high-performance V-band cascode HEMT mixer is presented together with a compact downconverter module integrating the mixer with other receiver MMICs. The cascode mixer was optimized for conversion gain and/or linearity by employing the low-pass interstage networks and by optimizing the bias voltages. The low-pass interstage network effectively filters out the unwanted harmonics and spurious signals, and therefore, enhances the gain and the linearity of the cascode mixer. On a two-tone test, the cascode mixer showed a high conversion gain of 6.3 dB with an LO power of 2.6 dBm at 60 GHz. When the gate bias to the upper common-gate HEMT was tuned for the intermodulation distortion "sweet spot" theoretically predicted by the authors , the mixer showed a high third-order intercept point of 11.2 dBm with a decent gain of 4.1 dB under a small DC power consumption of 8 mW. To benchmark the performance of the cascode mixer of this work, a waveguide-based compact V-band downconverter module was built by integrating the mixer with an MMIC LNA, a VCO, and a LO driving amplifier. The downconverter module showed a conversion gain higher than 20 dB from 57.5 to 61.7 GHz. This paper shows the potential of the cascode FET mixer for high-performance compact downconverter applications at millimeter-wave frequencies.  相似文献   

6.
报道了研制的SiC衬底AIGaN/GaN HEMT微带结构微波功率MMIC,芯片工艺采用凹槽栅场板结构提高AlGaN/GaNHEMTs的微波功率特性.S参数测试结果表明AlGaN/GaN HEMTs的频率特性随器件的工作电压变化显著.研制的该2级功率MMIC在9~11GHz带内30V工作,输出功率大于10W,功率增益大于12dB,带内峰值输出功率达到14.7W,功率增益为13.7dB,功率附加效率为23%,该芯片尺寸仅为2.0mm×1.1mm.与已发表的X波段AlGaN/GaN HEMT功率MMIC研制结果相比,本项工作在单位毫米栅宽输出功率和芯片单位面积输出功率方面具有优势.  相似文献   

7.
A high-gain InP MMIC cascode distributed amplifier was developed which has 12 dB of gain from 5 to 60 GHz with over 20-dB gain control capability and a noise figure of 2.5-4 dB in the Ka band. Lattice-matched InAlAs/InGaAs cascode HEMTs on InP substrate with 0.25-μm gate length were the active devices. Microstrip was the transmission medium for this MMIC with an overall chip dimension of 2.3 mm×0.9 mm. The gain/noise figure advantages of the InP HEMT over the AlGaAs HEMT and the superior gain performance of the cascode HEMT over the common-source HEMT are demonstrated  相似文献   

8.
We have demonstrated very good performance, high yield Ka-band multifunctional MMIC results using our recently developed 0.25-μm gate length pseudomorphic HEMT (PHEMT) manufacturing technology. Four types of MMIC transceiver components-low noise amplifiers, power amplifiers, mixers, and voltage controlled oscillators-were processed on the same PHEMT wafer, and all were fabricated using a common gate recess process. High performance and high producibility for all four MMIC components was achieved through the optimization of the device epitaxial structure, a process with wide margins for critical process steps and circuit designs that allow for anticipated process variations, resulting in significant performance margins. We obtained excellent results for the Ka-band power amplifier: greater than 26 dBm output power at center frequency with 4.0% standard deviation over the 3-in. wafer, 2-GHz bandwidth, greater than 20 pet-cent power-added efficiency, over 8 dB associated gain, and over 10 dB linear gain. The best performance for the Ka-band LNA was over 17 dB gain and 3.5 dB noise figure at Ka-band. In this paper, we report our device, process, and circuit approach to achieve the state-of-the-art performance and producibility of our MMIC chips  相似文献   

9.
We report state-of-the-art V-band power performance of 0.15-μm gate length InGaAs/InAlAs/InP HEMT's which have 15 μm×23 μm dry-etched through-substrate source vias (substrate thickness 50 μm). The 500-μm wide InP HEMT's were measured in fixture at 60 GHz and demonstrated an output power of 190 mW with 40% power-added efficiency (PAE) and 6.8 dB power gain at an input power of 16 dBm. These results represent the best combination of power and PAE reported to date at this frequency for any solid state device. The results are achieved through optimization of the InP-based heterostructure which incorporates a graded pseudomorphic InGaAs channel and a graded pseudomorphic InAlAs Schottky barrier layer, and the use of 15 μm×23 μm dry-etched through-substrate source vias  相似文献   

10.
This letter presents recent improvements and experimental results provided by GaInAs/InP composite channel high electron mobility transistors (HEMT). The devices exhibit good dc and rf performance. The 0.15-μm gate length devices have saturation current density of 750 mA/mm at VGS=+0 V. The Schottky characteristic is a typical reverse gate-to-drain breakdown voltage of -8 V. Gate current issued from impact ionization has been studied in these devices, in the first instance, versus drain extension. At 60 GHz, an output power of 385 mW/mm has been obtained in such a device with a 5.3 dB linear gain and 41% drain efficiency which constitutes the state-of-the-art. These results studied are the first reported for a composite channel Al0.65In0.35As/Ga0.47In0.53 As/InP HEMT on an InP substrate  相似文献   

11.
A MMIC 77-GHz two-stage power amplifier (PA) is reported in this letter. This MMIC chip demonstrated a measured small signal gain of over 10 dB from 75 GHz to 80 GHz with 18.5-dBm output power at 1 dB compression. The maximum small signal gain is above 12 dB from 77 to 78 GHz. The saturated output power is better than 21.5 dBm and the maximum power added efficiency is 10% between 75 GHz and 78 GHz. This chip is fabricated using 0.1-/spl mu/m AlGaAs/InGaAs/GaAs PHEMT MMIC process on 4-mil GaAs substrate. The output power performance is the highest among the reported 4-mil MMIC GaAs HEMT PAs at this frequency and therefore it is suitable for the 77-GHz automotive radar systems and related transmitter applications in W-band.  相似文献   

12.
In this paper, a MMIC frequency doubler based on an InP HEMT and grounded CPW (GCPW) technology is reported. The doubler demonstrated a conversion loss of only 2 dB and output power of 5 dBm at 164 GHz. The 3 dB output power bandwidth is 14 GHz, or 8.5%. This is the best reported result for a MMIC HEMT doubler above 100 GHz  相似文献   

13.
The authors report on the state-of-the-art power performance of InP-based HEMTs (high electron mobility transistors) at 59 GHz. Using a 448-μm-wide HEMT with a gate length of 0.15 μm, an output power of 155 mW with a 4.9-dB gain and a power-added efficiency of 30.1% were obtained. By power-combining two of these HEMTs, an output power of 288 mW with 3.6-dB gain and a power-added efficiency of 20.4% were achieved. This is the highest output power reported with such a high efficiency for InP-based HEMTs, and is comparable to the best results reported for AlGaAs/InGaAs on GaAs pseudomorphic HEMTs at this frequency  相似文献   

14.
We have developed new solutions for InP high-electron mobility transistor (HEMT) scaling for power applications at W band. We have shown that the use of a small barrier thickness in order to respect the aspect ratio for a 70-nm gate length results in a significant kink effect and high gate source capacitances. We have also shown through a theoretical study that a structure containing an InP layer between the cap layer and the barrier would support both the frequency performances and the breakdown voltage. Thus, we propose an HEMT structure containing a thick InP/AlInAs composite barrier and where the gate is buried into the barrier. This enables us to respect the aspect ratio and simultaneously to obtain an important drain current density without observing any kink effect. Moreover, we have applied this process to structures containing innovative large band-gap InP and InAsP channels. We have achieved the best frequency performances ever reached for an InP channel HEMT structure. Power measurements at 94 GHz were performed on these devices. The InAsP channel HEMT demonstrated a maximum output power of 260 mW/mm at 3 V of drain voltage with 5.9-dB power gain and a power-added efficiency of 11%. These results are favorably comparable to the state-of-the-art of InP-based HEMT at this frequency.  相似文献   

15.
An In0.3Al0.7As/In0.3Ga0.7 As metamorphic power high electron mobility transistor (HEMT) grown on GaAs has been developed. This structure with 30% indium content presents several advantages over P-HEMT on GaAs and LM-HEMT on InP. A 0.15-μm gate length device with a single δ doping exhibits a state-of-the-art current gain cut-off frequency Ft value of 125 GHz at Vds=1.5 V, an extrinsic transconductance of 650 mS/mm and a current density of 750 mA/mm associated to a high breakdown voltage of -13 V, power measurements performed at 60 GHz demonstrate a maximum output power of 240 mW/mm with 6.4-dB power gain and a power added efficiency (PAE) of 25%. These are the first power results ever reported for any metamorphic HEMT  相似文献   

16.
InP HEMTs with a double recess 0.12 μm gate have been developed. The material structure was designed to be fully selective etched at both recess steps for improved uniformity and yield across the whole wafer. Devices demonstrated DC characteristics of extrinsic transconductances of 1000 mS/mm, maximum current density of 800 mA/mm and gate-drain reverse breakdown voltages of -7.8 V. Power measurements were performed at both 20 GHz and 60 GHz. At 20 GHz, the 6×75 μm devices yielded 65% maximum power added efficiency (PAE) with associated gain of 13.5 dB and output power of 185 mW/mm. When tuned for maximum output power it gave an output power density of 670 mW/mm with 15.6 dB gain and 49% PAE. At 60 GHz, maximum PAE of 30% has been measured with associated output power density of 290 mW/mm and gain of 7.4 dB. This represents the best power performance reported for InP-based double recess HEMT's  相似文献   

17.
介绍了一种新研制的W频段固态GaN功率放大器毫米波源,给出了系统组成与工作原理,提供了其主要部件W频段固态Gunn驱动源、W频段波导-微带转换器、主放大器芯片基本性能及实验测试结果。该固态毫米波源工作频率94 GHz,输出连续波功率大于300 mW,线性增益10 dB,附加效率(PAE)大于16%。在W频段固态毫米波源研制过程中,其单片微波集成电路(MMIC)功率放大器半导体材料选择经历了GaAs、InP到GaN演变,结果清楚表明, W频段毫米波源的GaN MMlC功率放大器输出功率、增益、效率、高温性能要优于其他固态MMIC功率放大器性能。 W频段大功率固态GaN MMlC技术将在毫米波领域带来新的技术革命和应用。  相似文献   

18.
利用电子束光刻技术制备了200nm栅长GaAs基T型栅InAlAs/lnGaAs MHEMT器件.该GaAs基MHEMT器件具有优越的直流、高频和功率性能,跨导、饱和漏电流密度、阈值电压、电流增益截止频率和最大振荡频率分别达到510mS/mm,605mA/mm,-1.8V,138GHz和78GHz.在8GHz下,输人功率为-0.88(2.11)dBm时,输出功率、增益、PAE、输出功率密度分别为14.05(13.79)dBm,14.9(11.68)dB,67.74(75.1)%,254(239)mW/mm,为进一步研究高性能GaAs基MHEMT功率器件奠定了基础.  相似文献   

19.
An ultra-low power InAs/AlSb HEMT Ka-band low-noise amplifier   总被引:2,自引:0,他引:2  
The first antimonide-based compound semiconductor (ABCS) MMIC, a Ka-Band low-noise amplifier using 0.25-/spl mu/m gate length InAs/AlSb metamorphic HEMTs, has been fabricated and characterized on a 75 /spl mu/m GaAs substrate. The compact 1.1 mm/sup 2/ three-stage Ka-band LNA demonstrated an average of 2.1 dB noise-figure between 34-36 GHz with an associated gain of 22 dB. The measured dc power dissipation of the ABCS LNA was an ultra-low 1.5 mW per stage, or 4.5 mW total. This is less than one-tenth the dc power dissipation of a typical equivalent InGaAs/AlGaAs/GaAs HEMT LNA. Operation with degraded gain and noise figure at 1.1 mW total dc power dissipation is also verified. These results demonstrate the outstanding potential of ABCS HEMT technology for mobile and space-based millimeter-wave applications.  相似文献   

20.
The DC and RF performance of δ-doped channel AlInAs/GaInAs on InP power high-electron-mobility transistors (HEMTs) are reported. A 450-μm-wide device with a gate-length of 0.22 μm has achieved an output power of 150 mW (at the 1-dB gain compression point) with power-added efficiency of 20% at 57 GHz. The device has a saturated output power of 200 mW with power-added efficiency of 17%. This is the highest output power measured from a single InP-based HEMT at this frequency, and demonstrates the feasibility of these HEMTs for high-power applications in addition to low-noise applications at V -band  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号