首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Traditional soil tests for phosphorus (P) were developed to arrive at fertilizer recommendations when water-soluble P fertilizers have been used. When slowly water-soluble fertilizers such as phosphate rock (PR) have been used, soil tests using acidic extractants overestimate bioavailability of P, whereas alkaline extractants underestimate it. Therefore, separate calibration curves are needed for soluble and PR-based fertilizers. There are two soil tests that show promise as suitable tests in soils fertilized with soluble as well as PR-based fertilizers. These are the iron oxide impregnated paper (P i ) test and the ion exchange resin paper test. In both cases, the strips act as a sink for P mobilized in a soil solution, and P measured depends only on the concentration of P mobilized in the solution and not on the source of P or properties of the soil. Both tests somewhat simulate the sorption of P by plant roots without disturbing the chemical equilibrium, unlike other tests that extract P by the destructive dissolution of specific soil P compounds. In both cases, P measured from soils fertilized with PR-based fertilizers has shown very good correlation with plant response. Field calibration with crops under different pedological and agroecological regimes is needed for using these soil tests in developing fertilizer recommendations.  相似文献   

2.
A greenhouse study was conducted with two surface, acidic soils (a Hiwassee loam and a Marvyn loamy sand) to measure the effect of increasing P-fixation capacity, on the relative agronomic effectiveness (RAE) of phosphate fertilizers derived from Sukulu Hills phosphate rock (PR) from Uganda. Prior to fertilizer application, Fe-gel was added to increase P-fixation capacity from 4.4 to 14.3% for the Marvyn soil and from 37.0 to 61.5% for the Hiwassee soil. Phosphate materials included compacted Sukulu Hills concentrate PR + Triple superphosphate (CTSP) at a total P ratio of PR:TSP = 50:50; 50% partially acidulated PR (CPAPR) from Sukulu Hills concentrate PR made with H2SO4; and Sukulu Hills concentrate PR (PRC) made by magnetically removing iron oxide from raw PR ore. Triple superphosphate (TSP) was used as a reference fertilizer. After adjusting soil pH to approximately 6, P sources were applied at rates of 0, 50, 150, and 300 mg total P kg–1 soil. Two successive crops of 5 week old corn seedlings (Zea mays L.) were grown. The results show that the RAE of the phosphate materials measured using dry-matter yield or P uptake generally decreased as P-fixation capacity was increased for both soils. CTSP was more effective in increasing dry-matter yield and P uptake than CPAPR. PRC alone was an ineffective P source. Soil chemical analysis showed that Bray 1 and Mehlich 1 extractants were ineffective on the high P-fixation capacity Fe-gel amended Hiwassee soil. Mehlich 1 was unsuitable for soils treated with PRC since it apparently solubilizes unreactive PR. When all of the soils and P sources were considered together, Pi paper was the most reliable test for estimating plant available P.  相似文献   

3.
The objective of this work was to develop and evaluate a soil test suitable for estimating the phosphorus status of soils whether they were fertilized with soluble or sparingly soluble P fertilizers or both. Four New Zealand soils of contrasting P sorption capacity and exchangeable Ca content were incubated alone or with monocalcium phosphate (MCP), reactive North Carolina (NC) phosphate rock or unreactive Florida (FRD) rock, at 240 mg P kg–1 soil, to allow the P sources of different solubilities to react with each soil and provide soil samples containing different amounts of extractable P, Ca and residual phosphate rock. The phosphorus in the incubated soils was fractionated into alkali soluble and acid soluble P fractions using a sequential extraction procedure to assess the extent of phosphate rock dissolution. Eight soil P tests [three moderately alkaline — Olsen (0.5M NaHCO3) modified Olsen (pretreatment with 1M NaCl) and Colwell; three acid tests — Bray 1, modified Bray 1 and Truog; and two resin tests — bicarbonate anion exchange resin (AER) and combined AER plus sodium cation exchange resin (CER)] were assessed in their ability to extract P from the incubated soils.The 0.5M NaHCO3 based alkaline tests could not differentiate between the Control and FRD treatments in any soil nor between the Control, NC and FRD treatments in the high P sorption soils. The acid extractants appeared to be affected by the P sorption capacity of the soil probably because of reabsorption of dissolved P in the acid medium. The AER test gave results similar to Olsen. Only the combined AER + CER test extracted P in amounts related to the solubility of the P sources incubated with each soil. Furthermore, when soil samples were spiked with FRD and NC and extracted immediately, the P extracted by the AER + CER test, over and above the control soils, increased with the amount and chemical reactivity of the rocks. There was no extraction of rock P by any of the alkaline extractions.Increases in the amounts of P extracted (P) by each soil test from the fertilized soils, over and above the control soils were compared with the amounts ofP dissolved from the fertilizers during incubation (measured by P fractionation). Soil P sorption capacity had least influence on the amounts of P extracted by the AER + CER and Colwell tests. However, the Colwell test was unable to differentiate between all P sources in all four soils and suffered from the disadvantage of producing coloured extracts. The AER + CER test appeared to have the potential to assess the available P status of soils better than the other tests used because of its ability to extract a representative portion of residual PR (in accordance with the amount and reactivity) and dissolved P, and thus to differentiate between fertilizer treatments in all four soils.  相似文献   

4.
Relationships between plant response and rates of dissolution of ground (< 150µm) North Carolina phosphate rock (NCPR), NCPR 30% acidulated with phosphoric acid (NCPAPR) and monocalcium phosphate (MCP) were assessed in pot experiments. The three fertilizers were incubated for 1, 50 and 111 days, at the rates of 75, 150 and 750µg P g–1 soil, using two soils with different P-retention capacity. After each period of incubation, four pots were set up from each treatment, and perennial ryegrass (Lolium perenne) was grown in a growth chamber for about six weeks to assess the agronomic effectiveness of the fertilizers. Results in dry matter yield and P uptake showed that immediately following application (1 day incubation), the MCP (solution) was supplying more P to plants than either the NCPR or the NCPAPR applied at the same rate. After 50 and 111 days of incubation, the NCPR and NCPAPR were just as effective in the lower P-retention Tekapo soil. The relative agronomic effectiveness (RAE) of the NCPR and NCPAPR compared with MCP was generally poorer in the higher P-retention Craigieburn soil than in the Tekapo soil shortly after application, but improved with time of incubation. Ryegrass responses to the application of the three fertilizers corresponded to the changing trends of exchangeable P in the soils, measured by the isotopic method.Regressions were made between plant P uptake and indices describing the intensity factor (water extractable P), quantity factor (Bray I P, Olsen P, 0.5M NaOH extractable P and isotopic exchangeable P) and the kinetic factor (Fin) of soil P supply to plants in the Tekapo soil. The percentage of variation in plant P uptake explained by individual indices was generally less than 80%, no matter which of the three single variable models, the Mitscherlich, the quadratic or the power function was fitted. However, more than 96% of the variation in plant P uptake in the Tekapo soil could be explained by the power function models involving two variables. The rate of P dissolution (Fin) determined by the isotopic dilution method was included in all the two variable models. The results suggest that assessment of soil P supply to plants should consider the kinetic factor in addition to the intensity and quantity factors, particularly where P fertilizers with differing solubility are applied.  相似文献   

5.
Phosphorus deficiency is one of the major constraints for normal plant growth and crop yields in the acid soils of Ghana and therefore addition of P inputs is required for sustainable crop production. This is often difficult, if not impossible for small-scale farmers due to the high cost of mineral P fertilizers and limited access to fertilizer supplies. Direct application of finely ground phosphate rocks (PRs) and their modified forms have been recommended as alternatives for P fertilization. The direct application of the natural and modified PRs to these acid soils implies the need to predict their agronomic effectiveness of the PRs in the simplest and most cost-effective manner. In this study the classical greenhouse pot experiment was compared to the 32P isotopic kinetics laboratory method for evaluating the agronomic effectiveness of natural and modified Togo PR in six highly weathered Oxisols from southwest Ghana. In the 32P isotopic kinetics laboratory experiment the six soil samples were each fertilised at the rate of 50 mg P kg–1 soil in the form of triple superphosphate (TSP), Togo PAPR-50%, and Togo PR, respectively. Controls without P amendment were also included. Isotopic exchange kinetics experiments were carried out on two sets of samples, immediately after P fertilizer additions (without incubation) and after 6 weeks of incubation under wet conditions and at a room temperature of 25 °C. In the greenhouse pot experiment, P fertilizers in the form of Togo PR, Togo PAPR, Mali PR and TSP were each applied to the six soils at rates equivalent to 0, 30, 60, and 120 kg P ha–1, respectively. The P fertilizers were mixed with the soils and maize (Zea mays L.) variety Obatanpa was grown for 42 days before harvest. The isotopic kinetics data of the control samples indicated that 5 of the studied soils had very low P fertility status as reflected by their low P concentrations in solution (CP<0.02 mg P l–1) and low exchangeable P (E1min < 5 mg P kg–1). The capacity factor and the fixation index of the soils were variable. Application of water-soluble P as TSP increased both the CP and E1 values of all the soils above the critical levels. Togo PR was least effective among the fertilizers tested for all soil soils, except in Boi soil. Acidulation of Togo PR (Togo PAPR-50%) was an effective means to increase its agronomic effectiveness. Direct application of natural Togo PR would be only feasible in the Boi soil series as reflected by its high Pdff% value in soil solution. Incubation with the P fertilizers caused an increase in the soil pH and a decline in the effectiveness of the applied P fertilizers, irrespective of the soil and the fertilizer utilized. Based upon the results of the greenhouse pot experiment, the relative crop response index (RCRI) in terms of increasing dry matter yield and P uptake followed the order of TSP > PAPR = Mali PR >Togo PR = Control. Both the laboratory index, Pdff% in soil solution derived from the isotopic method and the RCRI values obtained from the pot experiment produced similar results in ranking the P fertilizers tested according to their agronomic effectiveness. The isotopic kinetic method may be considered as an alternative to both greenhouse and field methods in the evaluation of agronomic effectiveness of P fertilizers in tropical acid soils when it offers comparative advantages in assessing the soil P status and its changes. But trained staff and adequate laboratory facilities are needed to perform this technique. Also the method can be used as a reference for comparison purposes as in this case. Further research is needed to assess the overall agronomic effectiveness (immediate and residual effects) of PR sources in predominant cropping systems of this region of Ghana.  相似文献   

6.
The effect of incubation on the fate of phosphorus in four phosphatic fertilizers (diammonium phosphate and three rock phosphates) applied to four weakly acid to acid soils was studied. Percent utilisation of fertilizer P by the crop was measured by isotopic labelling and the level and quality of available soil P following addition of fertilizer was measured by the isotopic dilution kinetics method. Percent utilisation of fertilizer P decreased as time of contact between fertilizer and soil increased. The quantity of available soil P increased immediately after applying fertilizer but then decreased. The efficiency of P from rock phosphate was not increased by application long before sowing the crop. From practical viewpoint it is important to apply P fertilizer as near as possible to the time of planting in order to reduce the negative effects of P fixation by the soil.  相似文献   

7.
The agronomic effectiveness of three P fertilizers (diamonium phosphate, rock phosphate and compost) was studied in a greenhouse experiment using wheat. A radioisotopic method, using triple superphosphate labelled with32P, was used to evaluate the P in dried tops that was derived from i) the soil, ii) labelled superphosphate and iii) the fertilizer being studied.The ratio between P uptake from each fertilizer and P uptake from the soil was used to compare the effectiveness of the different fertilizers. P derived from diammonium phosphate was greater than P derived from the soil, except in one soil. P derived from rock phosphate was always lower than P derived from the soil. The effectiveness of compost depended on soil type. Compost can produce two kind of effects: i) a direct P contribution and ii) an indirect effect improving P uptake from the soil. The radioisotopic method can be used to study the effectiveness of fertilizers even when there are no differences in yield.  相似文献   

8.
Phosphorus (P) is needed in large areas of developing countries toimprove soil fertility for crop production. The use of phosphate rock (PR) isan alternative to costly soluble P fertilizers, but it is ineffective usuallyin non-acid soils unless it is modified i.e. partially acidulated (PAPR). Alaboratory incubation study using the isotopic exchange kinetic method of32P and field experiments were undertaken on a neutral Ferralsol ofCuba to evaluate the effectiveness of PAPRs as fertilizers for common bean(Phaseolus vulgaris, L.). Sulfuric-acid based PAPR using40%, 50% and 60% of the acid required to produce singlesuperphosphate were studied. In the laboratory experiment Trinidad de GuedesPAPR was effective in providing P to the soil, through increases inisotopicallyexchangeable P and the percentage of P derived from fertilizer (%Pdff). In the three field experiments carried out to compare the P sources,yields of common bean were increased by PAPR, though the response was less thanwith triple superphosphate (TSP). The relative agronomic effectiveness (RAE) ofPAPR was greater than that of unacidulated PR. Taking into account the RAEvalues and the current cost of the P sources, the choice of Trinidad de GuedesPAPR instead of TSP could be economic, although the RAE value for PAPR waslowerthan that of TSP. This result indicates that PAPR could be used in thesoil understudy to obtain the best economic return. DM yield, P uptake and grain yield ofcommon bean were significantly increased by applying P as 50% PAPR. Lowcost improvement of the agronomic value of PR can be achieved by partialacidulation, so this modification of the phosphate rock show promise forutilization of PR reserves indigenous to developing countries.  相似文献   

9.
A variety of P compounds can accumulate in soils as residues of fertilizer and may influence soil test versus plant yield relationships. This work evaluates specific chemical extractants for their capacity to identify such Al, Fe and Ca phosphates in soils as a basis for increasing the precision of yield prediction. Aluminium phosphate, iron phosphate, calcium phosphate (apatite) and P sorbed onto gibbsite, goethite and calcite were added to four Western Australian lateritic soils. These soils were then subjected to sequential selective extraction using a modified Chang and Jackson procedure in order to evaluate the selectivity of these extractants for the different forms of P with the sequence of extraction: 1 M NH4Cl, 0.5 M NH4F, 0.1 M NaOH + 1 M NaCl, citrate-dithionite-bicarbonate (CDB), 1 M NaOH and 1 M HCl. The results show that the procedure is not sufficiently specific and thus might be of little value for estimating the forms and amounts of residues of phosphate rock fertilizers in soils.  相似文献   

10.
Low grade phosphate rock (PR), containing high amounts of oxides of iron and aluminium is neither suitable for fertiliser production nor useful for direct application to annual crops. The fertiliser effectiveness of P extracted by H2SO4 from a low-grade phosphate rock, PR (Christmas Island C-grade PR) was evaluated for wheat (Triticum aestivum L.) on a calcareous loam (pH 8.4) and a non-calcareous loam (pH 6.9) in field and glasshouse experiments. Superphosphate was used to compare the performance of the acid extracts of PR. In the non-calcareous loam soil, crop establishment and yield were significantly reduced by the acid extracts of PR due to increased acidity. In the calcareous soil, however, the acid extracts of PR performed as well as superphosphate; similar or even higher crop yields were obtained with the former, especially when applied near the seed. The acid extracts of low-grade PR may, therefore, have a role in calcareous soils, where the extract can be applied directly or added in the irrigation waters to supply P to crops.  相似文献   

11.
In Venezuela, 70% of the soils are acid with low natural fertility where phosphorus is the most limiting element together with nitrogen and potassium for plant growth. The efficiency of phosphate fertilization is low. Greenhouse and field experiments were conducted to evaluate the efficiency of natural and modified rock phosphate using conventional and isotopic techniques. An incubation experiment was done to measure changes in available P on application of different phosphate fertilizers at a constant rate of 100 mg P/kg in ten acid soils of agricultural importance in Venezuela. In the greenhouse, two experiments were conducted to relate P fixation to soil P availability and the response of an index plant (Agrostis sp.). A high variability in P fixing capacity of the soils (r1/Ro = 0.02–0.76) was observed with the same level of available P. This fixation index is defined as the proportion of the added radioactivity (32P) remaining in the soil solution after 1 min of exchange and a low fixing capacity is indicated by the values close to 1. The proportion of the total soil P that can possibly enter the soil solution and therefore is potentially available for plant uptake was measured using the traditional method (Bray I) and the isotopic method (E value). The high variability was also apparent in available P extracted by Bray I showing a range of 10 to 88% of the total P removed by the extracting solution. The incubation studies showed that the effectiveness of the P source for available P in the soil solution was related to their reactivity and the soil P fixing properties. The increase in the fixing capacity of the soils used caused a significant reduction in the E value, independent of the source of P used. A high positive and significant correlation between Bray I extracted P and the E value (r = 0.95) obtained from the different treatments, showed the relationship of the extractant for some forms of available P in soils where rock phosphate was applied. In the greenhouse experiment, the crop response was related to the P fixing properties of the soil, the initial availability and the solubility of the P source used. The P in plant derived from the fertilizer and the Utilization Coefficient decreased significantly as the P fixing capacity of the soils increases indicating a lower availability of P for the the index plant (Agrostis sp.). The P in plant derived from the P fertilizers calculated by using the specific activity of each treatment and the one of the check plot showed that triple superphosphate had the highest values with acidulated Riecito rock phosphate (40%) having intermediate values, and Riecito rock phosphate having the lowest value. The use of 32P techniques as a powerful method to study soil P dynamics and P uptake from different P sources and the effectiveness of phosphate rocks (natural and modified) produced in Venezuela with respect to the water-soluble P source (imported), are some of the practical implications of this study.  相似文献   

12.
The agronomic effectiveness of P fertilizers, as sources of phosphorus for crops, was evaluated using the quantities, Pf, of phosphorus taken up byLolium perenne grown on 14 soils during greenhouse experiments in pot cultures. The Pf quantities were determined using32P-labelled fertilizers. Data were analysed using a new concept: the Isotopic Relative Agronomic Effectiveness (IRAE). The IRAE value was defined as the ratio of the Pf quantity, taken up by a crop, of a tested fertilizer over the Pf quantity, taken up by a crop, of a fertilizer used as standard. In our experiments diammonium phosphate (DAP) was used as standard P fertilizer and two rock phosphates, the North Carolina rock phosphate (NCPR) and a calcium-iron-aluminium phosphate (Phospal), were tested. As a linear relationship between Pf(NCPR) quantities and Pf(DAP) quantities was obtained, with r2 = 0.95, when the application rates increased from 15 mgP (kg soil)–1 to 200 mgP (kg soil)–1, it is conciuded that IRAE values for a given fertilizer, other than the standard fertilizer, could be determined with a single rate of application. As regards soil pH in the range 4.7 to 8.2 the IRAENCPR is related to soil pH by a curvilinear relationship: log IRAENCPR = –(0.44) pH + 4.05 with r2 = 0.89. The average of IRAEphospal values was 0.15 with a standard error = 7% irrespective of soil pH. Then a logarithmic relationship was obtained between IRAE values of the two tested fertilizers and their water P-solubility determined at the soil pH where they were applied.  相似文献   

13.
Tropical soils are often low in available P and therefore require inputs of P fertilizer for optimum plant growth and production of food and fiber. The cost of applying imported or locally produced, water-soluble, P fertilizers is often greater than utilizing indigenous phosphate rock. Therefore quantifying the P availability of soils amended with phosphate rock-based products in a variety of crop management and environmental conditions in developing countries is desirable for making recommendations on best type and rate of fertilizers to use to obtain maximum agronomic and economic benefits. One adequate approach for evaluating the agronomic effectiveness of rock phosphate materials is through the use of32P/33P isotopic tracers. The present paper describes the principles and assumptions of the32P isotopic techniques commonly used in the field and greenhouse for the agronomic evaluation of rock phosphate materials. An overview of the applications of these techniques is also given.  相似文献   

14.
Agronomic evaluation of modified phosphate rock products   总被引:1,自引:0,他引:1  
Phosphorus (P) is critically needed to improve the soil fertility for crop production in large areas of developing countries. The high cost of conventional, water-soluble P fertilizers constrains their use by resource-poor farmers. Finely ground phosphate rock (PR) has been tested and used as a direct application fertilizer on tropical acid soils as a low-cost alternative where indigenous deposits of PR are located. However, direct application of PR with low reactivity or with inappropriate soil/crop combinations does not always give satisfactory results. Partial acidulation of PR (PAPR) or compaction with triple superphosphate (PR + TSP) or single superphosphate (PR + SSP) represent technologies that can be used to produce highly effective P fertilizers from those indigenous deposits. Numerous field trials conducted by IFDC in Asia, sub-Saharan Africa, and Latin America have demonstrated that PAPR at 40-50% acidulation with H2SO4 or at 20% with H3PO4 approaches the effectiveness of SSP or TSP in certain tropical soils and crops. This paper discusses how the agronomic effectiveness of PAPR is affected by mineralogical composition and reactivity of PR used and by soil properties and soil reactions. The paper also indicates that if a PR has high Fe2O3 + Al2O3 content, it may not be suitable for PAPR processing because of the reversion of water-soluble P to water-insoluble P during the PAPR manufacturing process. Under these conditions, compaction of PR with water-soluble P fertilizers (e.g. SSP, TSP) at P ratio of approximately 50:50 can be agronomically and economically attractive for utilizing the indigenous PRs in developing countries.  相似文献   

15.
Field experiments were conducted in Niger with pearl millet (Pennisetum glaucum [L] R. Br.) in which the crop was fertilized with phosphate rock (PR) from two deposits from Niger (Tahoua and Parc W). The PR was applied either as ground rock or as partially acidulated phosphate rock (PAPR) and was compared to water soluble sources (TSP and SSP) in terms of millet yield response. The ability of five soil testing procedures (Bray P1, Bray P2, Mehlich 1, Olsen, and water extraction) to establish P sufficiency levels for millet was tested. The results of all soil testing methods were highly correlated amongst each other for the treatments receiving water-soluble fertilizers or PAPRs. None of the soil testing procedures which were evaluated was able to accurately measure available P when PRs were applied. Sufficiency levels were calculated for the PAPR and water-soluble fertilizers using nonlinear regression analysis and a graphic procedure for each of the P soil testing methods. The Bray P1 method appeared to be the most reliable procedure and was used to study the effect of accumulated total or total water + citrate-soluble P rates on final P availability. A single quadratic function was able to describe this effect when the P rates were expressed as water + citrate-soluble P for both PAPRs and water-soluble fertilizers independently of the P fertilizer source.  相似文献   

16.
A glasshouse trial using lettuce as the test crop, and laboratory incubations were used to evaluate the influence of various nitrogen fertilizers on the availability of phosphate from an unfertilized loamy sand soil and from the same soil fertilized with Sechura phosphate rock or monocalcium phosphate. The order in which nitrogen fertilizer form increased plant yield and P uptake from soil alone and from soil fertilized with the rock was ammonium sulphate > sulphurised urea > ammonium nitrate > urea > potassium nitrate. For each rock application (both 30 and 60 mg/pot) and for soil alone, increased P uptake by the plant correlated well with decreased soil pH. In soil fertilized with the soluble P form, monocalcium phosphate, the form of the nitrogen fertilizer had little effect on plant P uptake. Subsequent laboratory incubation studies showed that increased dissolution of soil-P or Sechura phosphate rock did not occur until acidity, generated by nitrification or sulphur oxidation of the fertilizer materials, had lowered soil pH to below 5.5. A sequential phosphate fractionation procedure was used to show that in soils treated with the acidifying nitrogen fertilizers, ammonium sulphate and urea, there was considerable release of Sechura phosphate rock P to the soil, amounting to 42% and 27% of the original rock P added, respectively.  相似文献   

17.
Phosphate rocks partially acidulated either with H3PO4 or H2SO4 were compared against SSP or TSP as phosphate fertilizers for permanent pasture. Eleven field trials were conducted over periods of up to 6 yrs. Fertilizers were surface applied annually. Initial soil pHw values ranged from 5.5–6.3 and Soil P retention from 25% to 97%. The PRs used for partial acidulation were unground or ground North Carolina PR, ground Khouribga PR, and a blend of ground PRs of North Carolina, Arad and Khouribga PRs. From the DM yields, fertilizer substitution values were calculated: fertilizer substitution value was the ratio of total P applied as superphosphate to total P as PAPR required to produce the same DM yield.Rates of dissolution of the PR component of PAPRs were also determined in soils collected from two trials.Agronomic results demonstrated that 30% acidulated phosphoric PAPRs (about 50% of total P as water-soluble P) were as effective as TSP, when the PR acidulated was from unground North Carolina PR. Results from one field trial indicated that when PAPR was from ground North Carolina PR, 20% acidulated product (water-soluble P 30–40% of total P) was equally effective as TSP. Replacement of ground North Carolina PR by a less reactive Khouribga PR did not appear to decrease the yield. Results indicated that per unit P released into soil solution, PAPRs were more efficient fertilizers than TSP. With annual applications, fertilizer substitution value of PAPR 30% tended to increase with time.Sulphuric PAPRs prepared from North Carolina PR were generally inferior to phosphoric PAPRs containing similar amounts of water-soluble P. This was attributed to the presence of CaSO4 coatings.Abbreviations DM Dry matter - PAPR Partially acidulated phosphate rock - PR Phosphate rock - SSP Single superphosphate - TSP Triple superphosphate  相似文献   

18.
Two experiments examined options for reducing the inputs of P and K fertilizers for hybrid squash (Cucurbita maxima L.) at Pukekohe, New Zealand. The first experiment examined the effects of elevating the NaHCO3-soluble P from 32 to 130 mg kg–1 and the exchangeable K from 140 to 350 mg kg–1 within strips from 0 to 0.75 m around rows of hybrid squash planted 1.5 m apart. From both P and K, crop yield increased as the width of the fertilized strip was increased up to 0.25 m, while wider fertilized strips had no further effect. These results followed similar effects on plant dry matter and tissue P or K concentration during early growth, and are explained in terms of the P and K accumulation by the crop, the decline during growth of the sensitivity of the crop to soil P and K fertility associated with declining rates of P and K uptake per unit length of root. Implications for fertilizer management for hybrid squash are also discussed.The second experiment compared the effects of partially acidulated phosphate rock and triple-superphosphate on soil P fertility, growth and yield of hybrid squash. Partially acidulated phosphate rock had smaller effects than those of triple-superphosphate on NaHCO3-soluble P levels in the soil, plant dry weight and tissue P concentration soon after emergence, and subsequently crop yield. On average, partially acidulated phosphate rock increased crop yield by about 70% of that following the application of the same quantity of P as triple-superphosphate. This lower effectiveness of partially acidulated phosphate rock for hybrid squash is explained in terms of its lower solubility and hence smaller effect on NaHCO3-soluble P in the soil during early growth, when the crop is most sensitive to soil P fertility.  相似文献   

19.
Many isotopic techniques can be applied to determine the relative immediate and residual effectiveness of P fertilizers. Using isotopes as tracers, the percentage of utilization by plants of the P derived from a fertilizer can be determined. However this is only possible during the three or four months after the application. Therefore, the P fertilizers may be classified only according to their relative immediate effectiveness. To also evaluate residual effect, which can be observed when more P is applied than is removed with harvest, isotopes of phosphorus can be used. This residual effect is determined by comparing pool sizes of bioavailable soil P in soils with and without P fertilizer aged in soil. The bioavailable soil P pool may be analyzed according to three isotopic experimental procedures which give access to either the A value, or the E value or the L value. The aims, the similarities and the differences between these three procedures, are examined. Some of the theoretical and practical constraints of each method are described in this paper; they must be followed in order to obtain reliable information for agronomic purposes. A method involves measuring the rate of isotopic exchange of phosphate ions in soil-solution systems maintained in steady-state. It is now possible to predict the effectiveness of P fertilizers, whatever their chemical form when this method is applied on soil samples where P fertilizers were applied.This paper was originally submitted as part of the special issue on Evaluation of the Agronomic Effectiveness of Phosphate Fertilizers through the use of Nuclear Related Techniques edited by F. Zapata  相似文献   

20.
Phosphorus (P) is critically needed to improve soil fertility for sustainable crop production in large areas of developing countries. In recent years, phosphate rock (PR) for direct application has been tested in tropical acid soils as a potential alternative to conventional water-soluble P fertilizers like single superphosphate (SSP) and triple superphosphate (TSP). Some developing countries have PR deposits which, if used to supplement other imported P fertilizers, would allow a saving of much needed foreign exchange. Solubility of P fertilizers is not the only criterion in selection of the most suitable P fertilizer. This paper discusses the results of experiments to compare the relative agronomic effectiveness (RAE) of various PR sources with respect to SSP or TSP as influenced by four important factors: PR sources, soil properties, management practices, and crop species. Under certain conditions, PRs can be agronomically effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号