首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
研究了一种在-150℃~100℃宽温度范围具有较高剪切和剥离强度,并且能够承受液氮温度(-196℃)~150℃冷热冲击的室温固化环氧胶粘剂体系。探讨了促进剂2,3,4-三(二甲胺基甲基)苯酚(DMP30)的最佳用量,考察了不同固化时间及后固化工艺对胶粘剂固化度、玻璃化转变温度和力学性能的影响。结果表明,适量DMP30的添加有利于提高固化物的力学性能,后固化可以提高固化物的固化度和拉伸强度,但对于已处于玻璃态的固化物的性能影响很小。当胶粘剂的本体强度达到一定值后,体系固化度和玻璃化转变温度与其剪切强度的关系不大,后固化对其本体强度的提升不能带来粘接强度的相应明显提高。  相似文献   

2.
李世喜 《包装工程》1994,15(3):116-120
介绍了采用DSC(差示扫描量热)方法,对610l#环氧胶加入不同比例的固化剂,通过对比试验确定了固化剂最佳加入量,并分析了固化反应的转化率α与固化时间t及固化温度T之间的关系,求出了固化反应的表观活化能。  相似文献   

3.
室温固化柔韧性水性环氧固化剂的合成与性能   总被引:5,自引:0,他引:5  
拟合成一种室温固化柔韧性水性环氧固化剂。首先在工艺条件(TETA/EPON 828摩尔比为2.2/1,反应温度65℃,反应时间4.0 h)下,滴加液体环氧树脂EPON 828到三乙烯四胺(TETA)的丙二醇甲醚(PM)溶液中,对TETA扩链反应,合成出TETA-EPON 828加成物;然后在反应温度70℃,反应时间3h的条件下,滴加聚醚多元醇二缩水甘油醚(DGEPG)到TETA-EPON 828加成物的PM溶液中再进行扩链反应,合成出TETA-EPON 828-DGEPG加成物,最后除去大部分PM溶剂后,在55℃左右,滴加蒸馏水到TETA-EPON 828-DGEPG加成物中,将其稀释到固含量为52%左右。所合成出的水性环氧固化剂与液体环氧树脂所形成的双组分室温固化涂膜,具有良好的柔韧性和耐冲击性。并用水溶解性实验及红外光谱等对TETA-EPON 828-DGEPG进行了表征。  相似文献   

4.
利用碳纳米管(CNTs)表面官能团与环氧丙烯酸酯(EA)齐聚物的反应, 制备了碳纳米管/环氧丙烯酸酯(CNTs/EA)光敏性树脂, 通过紫外光(UV)固化交联制备出新型复合涂层。研究了涂层的阻隔红外/紫外线性能, 在近红外区(4000~12000 cm-1)的阻隔率为68.55%, 对可见光(380~780 nm)的透过率大于85%, 对于<300 nm的紫外线完全阻隔。同时复合涂层力学性能与EA涂层相比也得到提高, 在光阻隔涂层方面具有潜在的应用前景。   相似文献   

5.
新型室温固化双组分胶粘剂的研究   总被引:1,自引:0,他引:1  
利用自合成聚丙烯酸酯聚合物和环氧丙烯酸酯制备了新型双组分室温固化丙烯酸酯胶粘剂.研究并讨论了该胶粘剂组成的比例、活性单体对粘合强度、胶粘性能和胶粘剂的贮存稳定性的影响、确定了室温固化氧化-还原体系剂及适宜固化时间用量.该胶粘剂对金属的拉伸强度可达23.5MPa.  相似文献   

6.
将端羧基液体丁腈橡胶(CTBN)与环氧树脂(EP)预聚,采用红外光谱、黏度计、万能电子材料试验机及扫描电镜(SEM)研究了CTBN含量对EP/聚酰胺/聚醚胺室温固化环氧结构胶的性能影响。结果表明,CTBN用量从0phr增加至20phr时,胶体拉伸强度从45MPa降低至29MPa,降低了35.56%;压缩强度从98MPa降低至60.2MPa,降低了38.6%;当CTBN加到10 phr时,极大地提升了粘接强度,钢-钢剪切强度从4.1MPa上升到16.7MPa,增加了3.07倍;结构胶加热至400℃时,EP质量损失达73.7%,而CTBN改性EP的质量损失为59.4%。SEM结果表明,CTBN在胶体固化过程中析出橡胶相,还有一定的空穴出现,橡胶粒子通过空化以及界面脱粘释放其弹性能,使材料的韧性得以提高。  相似文献   

7.
环氧粉末涂料的固化机制研究   总被引:1,自引:1,他引:1  
用丁酮作萃取溶剂 ,研究了环氧 /双氰胺粉末涂层自由膜在 160~ 2 30℃温度下经不同时间固化后的萃取固化度 ,分析了涂膜固化反应的动力学过程。在研究温度范围内 ,固化反应表现出单一的表观激活能。环氧 /双氰胺粉末涂料的固化反应相当复杂 ,既有环氧基与胺基的加成反应 ,又有体系中羟基与氰基的聚合反应。文中讨论了固化反应机理 ,澄清了两种反应的相对作用  相似文献   

8.
室温固化耐温胶粘剂研究进展   总被引:1,自引:0,他引:1  
对国内外室温固化耐温胶粘剂的研究现状进行了综述。重点介绍了几种可室温固化的有机胶粘剂,包括环氧树脂胶粘剂、有机硅胶胶粘剂以及它们的改性产品,简述了无机胶粘剂在室温固化和高温使用方面的情况。提出了室温固化高温型胶粘剂今后的研究和发展方向。  相似文献   

9.
紫外光固化环氧丙烯酸酯涂料的制备研究   总被引:1,自引:0,他引:1  
为解决环氧丙烯酸酯黏度较大这一问题,以低黏度的γ-缩水甘油醚氧丙基三甲氧基硅烷(A187)代替环氧树脂,讨论了环氧丙烯酸酯合成中A187与丙烯酸的配比、催化剂、反应温度和阻聚剂对反应的影响,研究了光引发剂含量对UV涂膜性能的影响。确定了该紫外光固化涂料的工艺。  相似文献   

10.
快速固化环氧—环硫树酯体系的研究   总被引:5,自引:0,他引:5  
  相似文献   

11.
室温固化柔性环氧树脂固化剂的制备与性能研究   总被引:2,自引:0,他引:2  
通过聚醚多元醇和甲基丙烯酸甲酯进行酯交换反应,然后利用多元胺与烯双键的加成改性,将多乙烯多胺与甲基丙烯酸酯反应,合成了含甲基丙烯酸聚醚多元醇酯柔性基目的新型环氧树脂室温固化剂.通过IR等方法对产物进行了征,探讨优化了各种反应条件,并考察了其对环氧树脂性能的影响.  相似文献   

12.
多壁碳纳米管改性环氧树脂胶黏剂实验研究   总被引:1,自引:2,他引:1  
将一种环氧树脂和表面羟基化的多壁碳纳米管(MWCNTs)按照质量比100∶0.1进行配比, 以超声波分散法制备MWCNTs/环氧树脂胶黏剂, 考察了两种硅烷偶联剂KH550和KH560对MWCNTs改性效果的影响。采用FTIR、 DSC、 DMA、 流变仪研究了MWCNTs对胶黏剂固化行为和流变特性的影响, 并结合断口形貌观察, 测试分析了MWCNTs对胶黏剂拉伸剪切强度和冲击强度的影响。结果表明: 硅烷偶联剂能与MWCNTs表面的羟基发生缩合反应, 增强了MWCNTs与环氧树脂基体的亲和性, 从而影响胶黏剂固化反应及黏度-剪切速率曲线; 经KH550改性的MWCNTs明显提高了胶黏剂与金属的界面粘结性, Al-Al拉伸剪切强度较无MWCNTs的胶黏剂提高了46.4%; 添加MWCNTs使胶黏剂的冲击断面更为粗糙, 开裂面积更大; 添加MWCNTs+KH550的胶黏剂冲击强度提高了44.1%, 说明MWCNTs/环氧树脂间界面性能对发挥MWCNTs的增韧效果非常重要。   相似文献   

13.
纳米TiO_2对复合固化环氧树脂胶粘剂的改性研究   总被引:2,自引:0,他引:2  
通过添加具有活性的纳米TiO_2对异佛尔酮二胺(IPD)与酰胺基胺树脂作为复合固化剂的环氧胶粘剂体系进行改性,实验结果表明:随着纳米TiO_2的适量加入,环氧胶粘剂体系的物理性能得到很大改善,当纳米TiO_2的加入量达到6%(Wt)时,达到最佳值,与纯树脂体系相比,弯曲强度提高96%,弯曲模量提高38%,冲击强度提高180%.而此时的环氧复合胶粘剂体系的粘接性能也比纯树脂均有所提高,剪切强度提高39%、剥离强度提高28%,以及玻璃化温度提高6%.可见,纳米TiO_2的加入对环氧胶粘剂体系具有明显的增强作用.  相似文献   

14.
室温固化环氧树脂结构胶粘剂的研究   总被引:2,自引:0,他引:2  
制备了室温快速固化综合性能较好的聚氨酯改性环氧树脂结构胶粘剂,探讨了增韧剂,固化剂等因素对胶 粘剂力学性能的影响,通过扫描电镜分析了胶粘剂断裂面的形貌特征,研究了胶粘剂形貌特征与力学性能的关系.研究结果表明:聚氨酯增韧环氧树脂既有物理交联产生"强迫互溶"和"协同效应",又与环氧树脂发生了化学反应,产生的化学键进一步加强了聚合物交联密度和聚合物的强度,当PU预聚体含量为环氧树脂40%时,聚氨酯与环氧树脂形成的互穿网络聚合物互穿程度最大,制备的胶粘剂力学性能最优,室温剪切强度达到20.16MPa.  相似文献   

15.
采用E-51型环氧树脂为导电胶基体树脂, 低分子量聚酰胺树脂(PA)为固化剂, 填加经硅烷偶联剂(KH550)改性后的纳米级和微米级铜粉及助剂制备导电胶。首次采用了液态固化剂(低分子量的聚酰胺酯), 以解决导电胶制备过程中填料用量受限的难题。通过正交试验方法探讨了导电胶中导电填料的含量、导电填料配比、硅烷偶联剂用量和还原剂添加量对导电胶粘接性能和导电性能的影响, 对导电胶的制备工艺进行了优化, 获得了制备导电胶的最佳方案。测试结果表明该导电胶能够在60 ℃下4 h内快速固化。在填料质量分数为65%时, 导电胶具有最低的体积电阻率3.6×10-4 Ω·cm; 导电胶的抗剪切强度达到17.6 MPa。在温度为85 ℃、湿度(RH)为85%的环境下经过1000 h老化测试后导电胶电阻率的变化和剪切强度的变化均不超过10%。   相似文献   

16.
The effect of multi-walled carbon nanotubes (MWNTs), both amino-functionalized (f-MWNTs) and unfunctionalized (p-MWNTs) on the curing behavior of epoxy resin (EP) cured with triethanolamine (TEA), was investigated using differential scanning calorimetry (DSC). Because the triethylenetetramine (TETA) grafted on the f-MWNTs could act as curing agent and the produced tertiary amine as negative ionic catalysts of curing reaction of EP, so the activation energy of the EP/TEA system was decreased by the addition of f-MWNTs. Viscosity played a key role in the curing behavior of the EP/TEA/MWNTs system, for high viscosity of the EP/TEA/MWNTs system could hinder the motion of the functional groups. The curing heat in EP/TEA/f-MWNTs (weight ratio 1/0.1/0.01) system was higher than the neat EP/TEA (weight ratio 1/0.1) system, while the curing heat in EP/TEA/p-MWNTs (weight ratio 1/0.1/0.01) was lower than the neat system. When the content of f-MWNTs was increased to 2 phr (weight ratio of 1/0.1/0.02), the curing heat became lower than that of the neat EP/TEA system, which was the result of the higher viscosity of the EP/f-MWNTs/TEA system. Since the curing heat indicated the curing degree of the system generally, the addition of the f-MWNTs was thought to increase the curing degree of the epoxy matrix at a relatively low content.  相似文献   

17.
改性阻燃环氧树脂胶粘剂的研制   总被引:1,自引:0,他引:1  
以三聚氰胺聚磷酸酯(MPP)为阻燃剂,以聚酯型聚氨酯预聚体改性环氧树脂E-44为基体,制备改性阻燃环氧树脂胶粘剂.通过对改性基体材料进行电子探针(EPMA)以及冲击强度测试,对改性阻燃胶粘剂进行剪切强度、热稳定性以及阻燃性能测试,从而确定了聚氨酯与阻燃剂用量对胶粘剂性能的影响.结果表明:环氧树脂100份,聚氨酯预聚体30份,阻燃剂30份,制备的改性阻燃胶粘荆具有优异的韧性和阻燃性能,其拉伸剪切强度为21.3MPa,氧指数达29.6.  相似文献   

18.
耐高低温环氧有机硅胶黏剂的力学性能研究   总被引:1,自引:0,他引:1  
介绍了一种研制的室温固化、耐高温、耐低温环氧有机硅胶黏剂.通过对胶黏剂的剪切强度分析,探讨了原料配比,偶联剂等因素对环氧有机硅胶黏剂力学性能的影响.研究表明:增韧剂在胶黏剂中含量适当时(质量比25%),能与固化剂充分反应,有机硅与环氧树脂也能获得较好的相溶性,制备的环氧有机硅胶黏剂的综合性能较优;硅烷偶联剂能改善胶膜界面层的胶接强度,提高环氧有机硅胶黏剂的剪切强度.  相似文献   

19.
耐高低温环氧有机硅胶粘剂的力学性能研究   总被引:1,自引:0,他引:1  
介绍了一种研制的室温固化、耐高温、耐低温环氧有机硅胶粘剂。通过对胶粘剂的剪切强度分析,探讨了原料配比,偶联剂等因素对环氧有机硅胶粘剂力学性能的影响。研究表明:增韧剂在胶粘剂中含量适当时(质量比25%),能与固化剂充分反应,有机硅与环氧树脂也能获得较好的相溶性,制备的环氧有机硅胶粘剂的综合性能较优;硅烷偶联剂能改善胶膜界面层的胶接强度,提高环氧有机硅胶粘剂的剪切强度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号