首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
It is of great significance to obtain a thorough understanding of the physical mechanisms responsible for humping bead phenomenon in high speed gas metal arc welding (GMAW) in order to raise welding efficiency. Experiments were conducted to observe the weld pool behaviors in high speed GMAW, and it was found that both the severely deformed weld pool surface and strong backward flowing play a dominant role in humping bead formation. In this study, a mathematical model is developed to quantitatively analyze the forming mechanism of humping beads for high speed GMAW through considering both the momentum and heat content distribution of the backward flowing molten metal inside the weld pool. The transient development of temperature profiles in the weld pool with severe deformation demonstrates the humping bead forming process under some welding conditions. The predicted and measured humping bead dimensions are in agreement.  相似文献   

2.
In the gas metal arc welding (GMAW) process, when the welding speed reaches a certain threshold, there will be an onset of weld bead undercut defects which limit the further increase of the welding speed. Establishing a mathematical model for high-speed GMAW to predict the tendency of bead undercuts is of great significance to prevent such defects. Under the action of various forces, the transferred metal from filler wire to the weld pool, and the geometry and dimension of the pool itself decide if the bead undercut occurs or not. The previous model simplified the pool shape too much. In this paper, based on the actual weld pool geometry and dimension calculated from a numerical model, a hydrostatic model for liquid metal surface is used to study the onset of bead undercut defects in the high-speed welding process and the effects of different welding parameters on the bead undercut tendency.  相似文献   

3.
目的 研究等离子+缆式焊丝脉冲GMAW复合焊过程的熔池流体行为.方法 综合考虑传热学以及流体动力学,建立Fluent数值分析模型.使用双椭球–锥体热源模型代表等离子弧焊传热模型,用双椭球热源表征GMAW电弧传热并考虑熔滴传热,同时考虑熔池受到的电磁力、浮力、表面张力、等离子流力等作用力.基于Fluent软件,对复合焊过...  相似文献   

4.
In the gas metal arc welding (GMAW) process, when the welding speed reaches a certain threshold, there will be an onset of weld bead undercut defects which limit the further increase of the welding speed. Establishing a mathematical model for high-speedGMAWto predict the tendency of bead undercuts is of great significance to prevent such defects. Under the action of various forces, the transferred metal from filler wire to the weld pool, and the geometry and dimension of the pool itself decide if the bead undercut occurs or not. The previous model simplified the pool shape too much. In this paper, based on the actual weld pool geometry and dimension calculated from a numerical model, a hydrostatic model for liquid metal surface is used to study the onset of bead undercut defects in the high-speed welding process and the effects of different welding parameters on the bead undercut tendency.  相似文献   

5.
《Materials & Design》2005,26(6):508-516
Due to their higher welding speed, automation and weld pool protection against to the atmosphere gases, gas metal arc welding (GMAW) process is widely used in industry. Due to the less stable arc associated with the use of consumable electrodes, GMAW process is not clean as good as gas tungsten arc welding process. Furthermore, the greater arc length in GMAW process also reduces the protective effect of the shielding gas. Due to electrochemical and thermochemical reactions between weld pool and arc atmosphere, it is quite important, especially weld metal toughness and joining of reactive materials to entirely create inert atmosphere for GMAW process. Therefore, a controlled atmosphere cabinet was developed for GMAW process. Low carbon steel combinations were welded with classical GMAW process in argon atmosphere as well as controlled atmosphere cabinet by using similar welding parameters. The mechanical and metallurgical properties of both weldments were evaluated. Result shows that toughness of the weld metal that was obtained in the controlled atmosphere cabinet much higher than that of classical GMAW process. The metallographic examination also clarified that there was not any gas porosity and inclusion in the weld metal compared with classical process.  相似文献   

6.
A transient three‐dimensional model that describes physical phenomena inside a welding pool during gas–metal arc welding process is presented. The model considers such phenomena as heat‐mass transfer, electromagnetics, hydrodynamic processes and deformation of the weld pool free surface. The fluid flow in the weld pool is induced due to the presence of the mechanical impact of the droplets, thermo‐capillary surface tension, thermal buoyancy and electromagnetic forces. The weld pool surface deformation is calculated by considering arc pressure and droplet impact force. A comparative analysis of the impact of the electric current of the welding arc and different force factors causing the motion of liquid metal in the weld pool on the shape of the welded seam was carried out and discussed.  相似文献   

7.
提出了一种虚拟材料法,用以消除铍激光热传导对接焊热过程数值分析中钎料与母材间的对接间隙所带来的能量边界条件.假定对接间隙被一种具有不同于母材和钎料的热物性参数的虚拟材料所填充,用指数旋转抛物线体热源模型预测了铍激光热传导对接焊缝横断面轮廓,并进行了试验研究.结果表明,在考虑对接间隙的情况下计算所得的熔池轮廓更接近于试验结果.虚拟材料的导热系数对熔池形状的影响较大,而密度和比热对熔池形状的影响较小.随着导热系数的增大,熔深和熔宽均逐渐减小.当导热系数取30 W/(m.K)时,计算所得的熔池形状与试验测得的值吻合良好.  相似文献   

8.
目的 研究等离子弧焊接穿孔过程中熔池内部的金属流动情况和小孔动态变化过程。方法 通过“传热-熔池流动-小孔”之间的相互耦合关系,建立了等离子弧焊接穿孔过程的数值分析模型,通过VOF方法追踪了小孔界面,采用FLOW-3D软件模拟了等离子弧焊接熔池和小孔的形成过程,定量计算了等离子弧焊接温度场、熔池流场及小孔形状;分析了等离子弧焊接熔池和小孔行为;并通过等离子弧焊接实验数据验证了模拟结果。结果 当焊接时间为0~1.0 s时,小孔深度曲线与熔深曲线几乎相同,小孔底部紧贴熔池底部;在2.8 s以后,小孔深度曲线与熔深曲线有一定距离,小孔深度曲线在一定范围内波动,等离子弧焊接电弧挖掘作用到达极限,电弧压力与其他力达到平衡状态。模拟的焊缝熔深为8.04 mm、熔宽为13.20 mm,实验测得的焊缝熔深为8.00 mm、熔宽为13.42 mm。结论 构建的随小孔动态变化的曲面热源模型和电弧压力模型可以描述等离子弧焊接过程中的电弧热-力分布;模拟出了等离子弧焊接熔池和小孔动态演变过程;模拟得到的等离子弧焊接焊缝形貌与实验测得的焊缝形貌基本吻合。  相似文献   

9.
Physical and Thermal Processes During Electron Beam Welding   总被引:2,自引:0,他引:2  
Complicated processes of the seam formation during electron beam welding are described. The physical processes in the weld pool and in the vapor-plasma mixture emitted in the cavity into the liquid metal created by intensive high energy beam are discussed. The dynamics of the liquid metal in the weld pool are interconnected with the energy distribution of the electron beam in the cavity which influences the weld depth and width and controls the defect formation in the weld such as pores (blow holes), non-uniformity of the weld root (spiking) and rippled weld surface. The moving heating source, working in the weld pool of metal samples is steady only as a first approximation due to the molten pool dynamics. A more exact heat model of the electron beam welding must take into account the unstable nature of beam transport within vapors and gas plasma in the cavity as well as the variations of energy dissipation on the crater walls and of heat transfer through molten metal of the weld pool.  相似文献   

10.
Gas tungsten arc (GTA) welding with deep penetration for high efficiency has long been of concern in industry. Experimental results showed that the small addition of carbon dioxide to the argon shielding gas produces an increase in the weld metal oxygen content, which is one of the compositional variables that strongly influence the Marangoni convection on the pool surface and ultimately change the weld pool shape. An inward Marangoni convection on the weld pool occurs, and hence a narrow and deep weld pool forms when the weld metal oxygen content is over the critical value of 100 ppm. When lower than this value, the weld shape becomes wide and shallow. A heavy oxide layer forms in the periphery area on the pool surface when the CO2 concentration in the shielding gas is over 0.6%. This continuous heavy oxide layer becomes a barrier for oxygen absorption into the molten pool, and also changes the convection mode on the pool surface. A higher welding speed decreases the heat input and temperature gradient on the pool surface, which weakens the Marangoni convection on the liquid surface.  相似文献   

11.
目的 研究激光+GMAW复合焊中不同激光功率参数对铝合金T型接头残余应力的影响,从而提高焊接性能。方法 分别考虑了热弹塑性理论、传热学以及T型接头几何特性,建立了铝合金T型接头激光+电弧复合焊残余应力的数值分析模型。采用双椭球体热源模型表征电弧热输入与熔滴晗,采用锥体热源模型对激光深熔焊进行描述。基于所建立的T型接头模型,使用ANSYS有限元软件对12 mm厚铝合金激光+ GMAW焊T型接头残余应力进行模拟计算,并研究其分布特征;使用X射线衍射法对T型接头处的残余应力进行测量从而对所建模型的准确性进行验证。同时,对比了不同激光功率下铝合金T型接头对残余应力的影响规律。结果 当激光功率分别为2、3、4、5 kW时,铝合金T型接头路径L3上的纵向残余应力最大值分别为270、263、258、251 MPa,米塞斯-等效应力最大值分别为265、261、257、250 MPa。结论 后焊的焊缝A对焊缝B有明显的热处理作用,使应力明显降低;在T型接头焊缝及近缝区,横向残余应力和厚度方向残余应力峰值均比纵向残余应力峰值小,且随着激光功率的增大,焊缝及近缝区拉应力峰值不断减小。  相似文献   

12.
异种钢激光-电弧焊复合焊接数值模拟   总被引:1,自引:1,他引:0       下载免费PDF全文
目的研究异种钢激光-GMAW复合焊接温度场以及应力场变化。方法运用ANSYS有限元分析软件,以5 mm厚D500钢和A514钢为研究对象,采用均匀分布的柱体热源与椭球热源组合的方法,建立了激光-GMAW焊接热源模型,对异种钢激光电弧复合焊接过程进行了模拟计算,并与实验所得的焊缝形状以及焊后残余应力进行了对比。结果结果表明,异种钢激光电弧复合焊接过程焊接变形以及残余应力实验结果与数值计算结果吻合较好。结论验证了锥体加柱体热源与椭球热源的组合热源模型在异种钢激光-GMAW复合焊接温度场及应力场模拟中的适用性,从而为不同焊接工艺条件下异种钢激光-GMAW复合焊接的焊缝形状和尺寸预测,提供了一种有效的途径。  相似文献   

13.
Weld joints manufactured with a welding electrode type 308L and by three different arc welding processes shielded metal arc welding (SMAW), gas metal arc welding (GMAW) and flux cored arc welding (FCAW) in a AISI/SAE 304 were studied in order to compare the failure mechanisms associated with their mechanical and microstructural properties. Chemical compositions were analyzed by optical emission spectroscopy and the ferrite numbers (FN) of the welds were also identified. Relevant microstructural characteristics of the different processes were analyzed by microscopy techniques. Finally, fatigue tests were performed to study the variations in the mechanical properties of each process and to analyze their most probable failure modes by means of a fractographic study, in which the characteristic morphologies of each one (nucleation, propagation, final fracture) were identified by means of optical stereoscopy and scanning electron microscopy (SEM). Three different fracture modes were found at the welding joints that showed correlations with microstructural changes produced during the welding process. The first failure mode displayed that the nucleation of the crack was at the weld root. The second failure mode was generated at the heat affected zone (HAZ), where the crack nucleated due to a variation in the grain size produced by the process and then further propagated through the edge of the weld. The third failure mode appeared due to the presence of exogenous inclusions generated by the welding process, which acted as stress concentrators in the weld and produce the initiation and further propagation of the crack. Lastly, some welding processes presented a combination of the previous failure modes and consequently multiple sites of crack nucleation.  相似文献   

14.
目前,关于焊接方法对X90管线钢焊接接头组织性能的影响相关报道较少。采用手工电弧焊(SMAW)、熔化极气体保护焊(GMAW)、埋弧焊(SAW)3种焊接方法对X90管线钢进行对接焊。利用金相显微镜(OM)、扫描电镜(SEM)及能谱仪(EDS)对焊接接头及冲击断口进行显微组织及成分分析,分析了焊接方法对X90管线钢焊接接头组织性能的影响规律。结果表明:焊缝区组织主要为粒状贝氏体和针状铁素体;SMAW粗晶区组织主要为多边形铁素体、粒状贝氏体及M/A组织,GMAW和SAW粗晶区组织主要为粗大的铁素体、粒状贝氏体及板条贝氏体;3种焊接接头硬度分布趋势一致,盖面层硬度最高;SMAW、GMAW和SAW焊接接头抗拉强度依次为714,771,790 MPa,断后伸长率依次为23.3%,22.9%,20.0%;SAW与GMAW熔合线处20℃冲击吸收功比SMAW高约40 J,断裂机制为微孔聚集型,在韧窝底部有金属碳化物粒子析出。  相似文献   

15.
We present results of computational simulations of tungsten-inert-gas and metal-inert-gas welding. The arc plasma and the electrodes (including the molten weld pool when necessary) are included self-consistently in the computational domain. It is shown, using three examples, that it would be impossible to accurately estimate the boundary conditions on the weld-pool surface without including the arc plasma in the computational domain. First, we show that the shielding gas composition strongly affects the properties of the arc that influence the weld pool: heat flux density, current density, shear stress and arc pressure at the weld-pool surface. Demixing is found to be important in some cases. Second, the vaporization of the weld-pool metal and the diffusion of the metal vapour into the arc plasma are found to decrease the heat flux density and current density to the weld pool. Finally, we show that the shape of the wire electrode in metal-inert-gas welding has a strong influence on flow velocities in the arc and the pressure and shear stress at the weld-pool surface. In each case, we present evidence that the geometry and depth of the weld pool depend strongly on the properties of the arc.  相似文献   

16.
目的 研究T型接头旋转光纤激光+GMAW复合焊熔池的温度场和流态特征,揭示气孔缺陷的产生及抑制机理。方法 依据光学、电磁学、传热学及流体动力学机理,建立T型接头旋转光纤激光+GMAW复合焊熔池数值分析模型。使用Fluent软件对旋转频率分别为50 Hz和100 Hz的T型接头旋转激光+GMAW复合焊进行温度场以及流态特征的模拟,对比不同频率下T型接头横、纵截面,从工艺和焊缝成形角度出发,针对不同频率对熔池、小孔成形以及气孔抑制的影响进行讨论。结果 当旋转频率为50 Hz时,纵截面内小孔最大深度为5.4 mm,横截面熔池内小孔开口直径相对较大,旋转一周后,小孔远离气泡,气泡无法逸出,形成气孔;当旋转频率为100 Hz时,纵截面内小孔深度显著降低,熔池体积明显减小,横截面内小孔最大开口直径和深度均降低,熔池尺寸也有所减小,在时间为0.097 s时,小孔上方区域出现的顺时针涡流不仅能抑制气孔,还能改善熔池的下垂以及立板焊趾处的咬边。结论 随着旋转频率的增大,小孔的最大开口直径和深度均降低,还对熔池具有搅拌作用,使熔池体积变小。  相似文献   

17.
利用流体力学理论和变分法原理,根据熔池本身重力、电弧压力和表面张力之间的动态平衡,推导出了 TIG 焊接熔池表面变形的计算公式。建立了熔池表面存在变形的流场与热场的数学模型。采用 SIMPLER 方法对不锈钢试件焊接熔池内的流场与热场进行了数值分析。焊接工艺试验表明,该模型计算的熔池成形与实验值吻合良好。  相似文献   

18.
Numerical simulation on interaction between TIG welding arc and weld pool   总被引:3,自引:0,他引:3  
The interface deformation between welding arc and weld pool is important in dynamic coupling numerical simulation on arc and pool. To reveal the interaction between welding arc and weld pool, unified mathematic model of TIG welding arc and pool was established in this paper. The moving interface was solved by updating the calculation region of arc and weld pool continually. Fluid flow and heat transfer of TIG welding arc and weld pool were analyzed basing on this model. The weld pool shape calculated by dynamic coupling welding arc and pool is more close to the experiment than that of non coupling calculation.  相似文献   

19.
A two dimensional transient numerical analysis and computational module for simulation of electrical and thermal characteristics during electrode melting and metal transfer involved in Gas-Metal-Arc-Welding (GMAW) processes is presented. Solution of non-linear transient heat transfer equation is carried out using a control volume finite difference technique. The computational module also includes controlling and regulation algorithms of industrial welding power sources. The simulation results are the current and voltage waveforms, mean voltage drops at different parts of circuit, total electric power, cathode, anode and arc powers and arc length. We describe application of the model for normal process (constant voltage) and for pulsed processes with U/I and I/I-modulation modes. The comparisons with experimental waveforms of current and voltage show that the model predicts current, voltage and electric power with a high accuracy. The model is used in simulation package SimWeld for calculation of heat flux into the work-piece and the weld seam formation. From the calculated heat flux and weld pool sizes, an equivalent volumetric heat source according to Goldak model, can be generated. The method was implemented and investigated with the simulation software SimWeld developed by the ISF at RWTH Aachen University.  相似文献   

20.
An experimental procedure was developed to join thick advanced high strength steel plates by using the hybrid laser/arc welding (HLAW) process, for different butt joint configurations. The geometry of the weld groove was optimized according to the requirements of ballistic test, where the length of the softened heat affected zone should be less than 15.9 mm from the weld centerline. The cross-section of the welds was examined by microhardness test. The microstructure of welds was investigated by scanning electron microscopy and an optical microscope for further analysis of the microstructure of fusion zone and heat affected zone. It was demonstrated that by changing the geometry of groove, and increasing the stand-off distance between the laser beam and the tip of wire in gas metal arc welding (GMAW) it is possible to reduce the width of the heat affected zone and softened area while the microhardness stays within the acceptable range. It was shown that double Y-groove shape can provide the optimum condition for the stability of arc and laser. The dimensional changes of the groove geometry provided substantial impact on the amount of heat input, causing the fluctuations in the hardness of the weld as a result of phase transformation and grain size. The on-line monitoring of HLAW of the advanced high strength steel indicated the arc and laser were stable during the welding process. It was shown that less plasma plume was formed in the case where the laser was leading the arc in the HLAW, causing higher stability of the molten pool in comparison to the case where the arc was leading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号