首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在真双极柔性直流输电系统中,虽然换流变压阀侧交流单相接地故障出现的概率较低,但是一旦发生,直流侧会产生严重的过电压。文中研究了柔性直流输电系统模块化多电平换流器(MMC)阀侧发生单相接地故障时的过电压特性及产生机理。首先,分析闭锁前后MMC桥臂子模块电容的充放电回路,对桥臂过电压和健全极线过电压的产生机理进行研究。随后,基于厦门柔性直流输电系统,对阀侧单相接地故障特性分析的准确性进行验证,并仿真分析闭锁延时对过电压的影响。结果表明,桥臂子模块电压的升高是由于直流线路分布电容的放电作用,健全极线过电压是由于闭锁前子模块电容的放电以及闭锁后交流侧电压的充电作用,闭锁时间越短,健全极线和故障相子模块电容过电压幅值越低。  相似文献   

2.
混合多端直流输电系统中逆变站采用子模块混合型模块化多电平电压源换流器(MMC)并联,因此对子模块混合型MMC换流阀电气应力及抑制策略进行研究对于系统安全性和可靠性分析具有重要的意义。首先分析了混合多端直流输电系统运行原理;然后进一步分析了MMC换流阀电气应力产生机理,并在此基础上提出了MMC换流阀电气应力抑制策略;最后在PSCAD/EMTDC软件中建立3端LCC+MMC+MMC型混合直流输电系统,并对MMC换流阀电气应力抑制策略进行了仿真验证。通过本文研究可知,故障发生过程中非故障换流站持续注入能量是MMC换流阀电气应力增大的主要原因,采用泄能装置后可以有效抑制MMC换流阀的电气应力。  相似文献   

3.
高压直流输电系统采用混合拓扑模块化多电平换流阀(modular multilevel converter,MMC)和电网换相变流器(line commutate converter,LCC)换流站相互协调控制,可实现直流和交流故障的穿越,但在受端交流系统严重故障工况下,易出现系统过压,以及依赖站间通信协调双端换流站切换的控制方式在长距离输电系统中延时较大等问题,为此提出柔性直流换流站的电压裕度控制方法。首先基于中国南方电网有限责任公司乌东德混合直流输电工程,利用PSCAD仿真软件搭建混合多端直流输电系统模型;继而研究受端系统交流故障特性和穿越方法,设计定直流电压外环和定子模块电容电压平均值外环的平滑切换方法;最后对受端换流站交流三相接地故障和直流线路故障进行仿真,证明所提控制方法能够有效抑制暂态过程中受端换流站子模块电容电压的升高,实现交流故障的穿越。  相似文献   

4.
送端采用电网换相换流器(LCC)、受端采用全半桥子模块混合型模块化多电平变流器(FHMMC)的LCC-FHMMC混合直流输电系统,当受端交流系统发生故障时,受端交流电压跌落,受端功率传输受阻,盈余的功率导致子模块电容过电压,甚至可能造成设备的严重损坏。为此,提出了一种基于FHMMC直流电压降压运行的受端交流系统故障穿越控制策略,使其直流电压始终低于逆变侧交流母线的电压有效值。同时,整流侧LCC保持常规的定直流电流控制,保证逆变侧的直流电流在额定值附近运行,从而实现了进入直流系统的有功功率与逆变器向受端交流系统输出的有功功率之间的平衡。最后在PSCAD/EMTDC仿真平台上对LCC-FHMMC混合直流输电系统受端交流系统发生的对称故障和不对称故障分别进行了仿真分析,仿真结果验证了所提控制策略能够快速有效地穿越受端交流系统故障,并抑制子模块电容过电压。  相似文献   

5.
陆书豪  贾秀芳 《电力自动化设备》2021,41(11):211-216,224
送端采用电网换相换流器(LCC)、受端采用半桥与全桥混合型模块化多电平换流器(FHMMC)的LCC-FHMMC混合直流输电系统,在受端发生阀侧单相接地故障时,具有与半桥或全桥型MMC不同的故障特性.分别从交流电源贡献、直流电源贡献以及高低端阀组差异3个角度对阀侧单相接地故障下子模块过电压机理进行了分析.随后,针对FHMMC混合直流输电系统直流侧无直流断路器的特点,提出了一种基于选相型单向晶闸管旁路支路的故障隔离策略,以及适用于LCC-FHMMC混合直流输电系统阀侧单相接地故障的保护策略.最后,基于PSCAD/EMTDC仿真平台搭建了相关模型,通过仿真验证了理论分析的正确性以及所提保护策略的有效性.  相似文献   

6.
基于模块化多电平换流器(modularmultilevelconverter,MMC)的多端柔性直流输电系统能够实现多电源供电和多落点受电,运行方式灵活,是解决清洁能源并网和消纳问题的有效技术手段。然而当系统受端交流侧发生故障时将出现盈余功率,导致直流过电压问题。对此,提出一种基于桥臂调制波动态调整的多端柔直系统直流过电压抑制策略。所提策略通过在换流阀桥臂调制波中引入直流电压偏差控制,动态调整暂态期间桥臂调制波的直流电压参考值,从而减少桥臂投入的子模块数量,最终达到抑制直流过电压的目的。为验证所提控制策略的有效性,在PSCAD/EMTDC中搭建了送端光水打捆经四端柔性直流输电的外送系统,给出了所提控制策略的参数设计方法。通过设置受端交流系统不同工况,对比研究了所提控制策略投入后的系统直流过电压特性,结果表明所提控制策略可以有效抑制因受端交流侧故障引起的多端柔性直流输电系统的直流过电压。  相似文献   

7.
通过对现有的常规直流系统进行柔性化改造,将受端换流站改造为柔性直流换流站,是一种构成混合直流输电系统较为经济可行的方式。介绍了一种将现有常规直流受端换流站改造为柔性直流换流站的方案,将常规换流阀替换为柔性直流换流阀,保留并利用了原有的换流变压器、交流穿墙套管等设备,降低了改造成本。首先,对受端柔性直流换流站几种潜在的主接线方案进行了初步对比;在此基础上,对所提出的柔性化改造方案进行主回路参数设计。设计结果表明,所提出的改造方案能够显著降低对子模块电容、桥臂通流能力的要求,降低了换流阀的成本和体积。最后通过PSCAD/EMTDC仿真验证了该方案的可行性和主回路参数设计的正确性。  相似文献   

8.
以乌东德电站送电广东广西特高压多端柔性直流示范工程为研究对象,考虑混合三端柔性直流输电系统因受端不同位置交流故障所致的直流过电压,提出相应的故障穿越协调控制策略。在受端主站发生网侧交流瞬时故障的情形下,通过设计混合型模块化多电平电压源换流器全桥子模块自适应负投入策略,实现了利用子模块电容短时过电压储能的能力来快速补偿站间直流电压的上升;短暂时延后,送端电网换相换流器通过定量调整电流指令值策略来减小子模块的不平衡充电功率。在受端主站发生阀侧交流故障的情形下,优先利用输电健全极的功率转代裕度来消纳故障极的部分不平衡功率;同时,故障极从站跟随主站半压运行,相应的高低压阀组切换至定电流及定电压模式,最终实现抑制站间过电流及减小盈余功率。仿真结果表明,2种故障条件下,所提的协调控制策略均可较快实现故障期间的功率平衡,有效抑制仅配备稳态基本协调控制策略下系统所出现的直流过电压现象,同时也基本维持了送端的总体有功传输容量。  相似文献   

9.
特高压直流输电系统换流站故障过电压研究   总被引:6,自引:1,他引:5       下载免费PDF全文
±800 kV特高压直流输电系统换流站内电容性和电感性组件较多,在发生短路故障时容易引起过电压现象。研究各种操作和故障情况下过电压的特性,保证系统的安全稳定运行非常重要。利用PSCAD仿真软件建立了±800 kV云南—广东特高压直流输电工程的模型,在换流站内选取了换流阀阀顶对中性母线短路故障和换流变压器阀侧单相接地两种典型故障工况进行了研究。结果表明阀顶对中性母线故障时非故障极线路过电压水平较高,在上组四个换流变压器阀侧绕组中高压端Y/Y绕组端子处单相接地时的过电压水平最高。  相似文献   

10.
苏志龙  鞠翔 《电工技术》2023,(11):206-209
首先基于昆柳龙直流工程与云广直流工程控制保护系统RTDS仿真实验数据,通过对比分析阀区故障时的故障特征及换流阀短路保护的动作特性,发现传统LCC换流阀短路保护判据在特高压混合直流系统中存在误动的风险。根据特高压混合直流系统与常规直流输电系统在系统结构和运行特性上的不同,分析出传统LCC换流阀短路保护判据直接应用于特高压混合直流系统时存在的缺陷。针对这一缺陷,改进了LCC换流阀短路保护判据,并通过仿真分析验证了新判据的有效性,为特高压混合直流输电工程的送端常直阀短路保护提高了有效的解决方案。  相似文献   

11.
设计了一种模块化多电平柔性直流输电阀控测试系统,包括极控模拟装置、换流站主电路信号发生装置、换流阀子模块模拟装置和监控后台等。该测试系统可以在不使用极控系统和换流阀本体的条件下,完成对模块化多电平柔性直流输电阀控系统的基本功能测试,包括子模块电容电压的读取和状态监视、均压控制、阀控对子模块故障处理逻辑、阀控自身故障处理逻辑、系统电压电流的采集等。仅需调整子模块模拟装置的接口数量,即可满足不同容量和电压等级的柔性直流输电阀控系统测试需要。对MVCE 300型柔性直流输电阀控系统进行了实际测试,测试结果表明,该测试系统可以满足柔性直流输电阀控设备厂内调试的需要。  相似文献   

12.
与常规直流输电不同,柔性直流输电换流阀子模块具备更为复杂的本体控制保护功能。以往的柔性直流输电控制保护设备联调中,重心往往集中在极控、阀控等上层控制保护设备,对子模块本体控制保护功能以及阀控相关的配合控制保护功能验证较少,特别是对实际运行中的子模块的保护功能很难加以验证,给工程运行带来故障隐患。设计了一种柔性直流输电换流阀子模块故障模拟系统,可实现对子模块故障的在线模拟,以验证子模块中控板和阀控相关的控制保护功能正确性。  相似文献   

13.
在通信失效的情况下运行混合直流输电系统,将会面临很高的安全风险。因为在无通信的情况下发生MMC侧站内故障,将会导致子模块电容电压超过安全限值。为此提出了一种新的解决方案,在子模块端口处并联了一个旁路晶闸管,在站内故障的情况下,触发旁路晶闸管,人为地构造直流短路故障,由LCC侧的直流线路保护系统检测出该直流短路故障,并启动gate shift(GS)控制策略,从而实现子模块过电压的抑制。最后基于PSCAD搭建了一个混合直流输电模型,并仿真验证了该方案的有效性,从而保证了在通信失效的情况下仍可以安全运行LCC-MMC系统。  相似文献   

14.
模块化多电平柔性直流换流器阀组本体保护的设计   总被引:3,自引:0,他引:3  
换流器阀组是柔性直流输电系统的关键设备。文中介绍了模块化多电平换流器阀组的基本原理和组成结构,基于舟山五端柔性直流输电工程对阀组过电流和过电压故障进行了仿真、分析研究,提出了阀组保护的关键需求,以此为基础构建了由子模块控制电路、阀控系统及柔性直流控制保护系统组成的多层次的完整的阀组本体保护系统及保护策略,提出了系统性的过流保护策略和系统性过电压判据,有效提高了阀组的过电流、过电压穿越能力。阀组保护系统及保护策略经过了±6kV两端柔性直流输电系统的试验验证和舟山、南澳工程现场试验的验证。  相似文献   

15.
风电并网基于模块化多电平变换器的高压直流输电(MMC-HVDC)交流电网侧发生短路故障,故障点交流电压的降低会使受端系统传输有功功率的能力下降,而风场侧功率传输基本不受影响,送端和受端有功功率出现差额,直流系统电压将持续上升,威胁系统安全.此外,如果MMC中部分子模块发生故障将导致换流器不能正常工作.为此,首先提出了可在直流侧并联安装采用统一控制的分散式小型卸荷负载来消耗直流系统无法消除的功率差额,从而维持直流系统电压的恒定;其次研究分析了换流器子模块故障特性,并提出了一种换流器子模块故障冗余保护策略.基于PSCAD/EMTDC仿真验证,通过将多余的能量消耗在分散式小型卸荷负载上,有效地抑制了直流过电压,保证整个柔性直流输电系统在故障期间短时运行,最大限度地保持功率的传输;采用子模块冗余保护策略可使换流器具有一定的故障容错能力,不因一个或少数几个子模块的故障影响整个装置的运行,提高了系统可靠性.  相似文献   

16.
针对受端由电网换相换流器(LCC)和电压源换流器(VSC)级联的混合直流输电系统中VSC在交流故障穿越时子模块过压的问题,文中提出在受端VSC直流侧安装耗能设备以抑制VSC子模块过压的方法,对比分析了基于直流斩波耗能电阻、泄流晶闸管和可控避雷器3种耗能设备的交流故障穿越原理及策略。基于PSCAD/EMTDC仿真平台搭建了包含工程实际控制保护主机程序的受端混联LCC-VSC特高压直流仿真模型,对比分析了3种耗能设备的交流系统故障穿越特性,结果表明在受端VSC直流侧安装耗能设备可以有效抑制子模块过压,实现交流故障可靠穿越。其中可控避雷器方案具有控制原理简单、可靠性高等优点,更适用于受端混联LCC-VSC特高压直流输电系统。  相似文献   

17.
综合电网换相换流器(LCC)和模块化多电平换流器(MMC)的优点,并针对我国西电东送的实际场景,对如下3种目前比较有应用价值的混合直流输电系统方案进行研究:方案1的送端采用LCC,受端采用半桥子模块型MMC串联二极管阀;方案2的送端采用LCC,受端采用全桥子模块与半桥子模块构成的子模块混合型MMC;方案3的送端采用LCC,受端采用LCC和半桥子模块型MMC构成的串联混合型换流器。首先,分别介绍了3种混合直流输电系统的拓扑结构、数学模型及控制方式;然后,在PSCAD/EMTDC中搭建了3种混合直流输电系统,对3种混合直流系统在送端交流系统故障和受端交流系统故障情景下的响应特性进行对比分析;最后,基于仿真结果总结了每种拓扑结构的优劣势。仿真结果表明,在送端交流系统故障的情景下,方案1可能会出现功率中断;在受端交流系统故障的情景下,方案1的故障响应特性要优于其他2种方案。  相似文献   

18.
设计了一套柔性直流输电换流阀运行状态在线监测系统,通过对换流阀子模块的电容电压、IGBT开关频率、温度以及阀冷、阀控等运行参数的在线监测,实时分析并预测换流阀的运行状态。提出了一种基于专家数据库的故障预测方法,可根据在线监测到的换流阀运行参数来提前预测其异常发展趋势,有利于故障的及早发现和预防。完成了在线监测系统的软硬件设计,并搭建了小容量的柔性直流输电物理动模试验平台进行了测试验证,测试结果表明,该系统可实现对柔性直流输电换流阀运行参数的在线监测和分析,为换流阀可靠运行提供了一种有效的监测手段。  相似文献   

19.
受端混合级联直流输电系统具有经济性高、灵活性强等诸多优势,应用前景十分广泛。当其受端VSC发生交流系统故障时,换流阀功率输送能力减弱,此时,整流站功率持续输出会加剧直流侧的功率盈余,造成VSC换流器电压急剧升高。故障结束后,系统需要较长时间恢复功率正常输送,严重影响系统的正常运行和稳定性。针对特高压混合级联系统受端换流器发生交流故障时直流侧过电压问题及故障结束后的功率恢复问题,提出了电压-功率协同控制策略及基于受端交流电压变化的交流低压限流控制策略。最后采用真实控制保护装置搭建基于RTDS仿真系统的硬件在环仿真平台,验证了所提策略的可行性。  相似文献   

20.
高压系统中直流偏磁对换流变压器和交直流输电产生巨大的危害,限流和隔直是抑制直流偏磁的主要方法,目前广泛采用的是通过中性点串联电容的方法,对电容的保护研究很少。本文利用PSCAD/EMTDC建立500 k V的高压直流输电电磁暂态仿真平台,在发生工频过电压时,对换流变压器中性点处串联电容的过电压,以及其2端保护装置火花间隙进行了仿真和分析,选择了最佳容抗值的电容器,并探究了火花间隙对中性点串联电容器的保护,结果表明:火花间隙对换流变压器中性点接地电容以及变压器中性点起到保护作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号