首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 63 毫秒
1.
本文研究了普通硅酸盐水泥掺量及不同种类和掺量的矿物掺合料对硫铝酸盐水泥性能的影响.结果表明普通硅酸盐水泥掺量小于60%时,普硅水泥-硫铝酸盐水泥体系(OPC-SAC体系)的胶砂强度随着普通硅酸水泥掺量的增加而降低,普通硅酸盐水泥掺量大于60%时,OPC-SAC体系的胶砂强度随着普通硅酸水泥掺量的增加而增大.并且对早期强度的影响较大.在硫铝酸盐水泥体系中掺入矿渣、粉煤灰和硅灰时,其胶砂强度随着掺量的增加而降低,在相同掺量下,矿物掺合料对强度的贡献率为:硅灰>矿粉>粉煤灰,对凝结时间的影响强弱为:硅灰>矿粉>粉煤灰.  相似文献   

2.
通过试验研究不同掺量的矿渣和硅灰对硫铝酸盐水泥混凝土凝结时间、力学性能、体积收缩和早期抗裂性的影响。研究结果表明,在硫铝酸盐水泥混凝土中,掺入矿渣会延长混凝土的凝结时间,抑制收缩变化和早期开裂,但会显著降低力学性能;掺入2.5%的硅灰可以缩短硫铝酸盐水泥混凝土的凝结时间,提高力学性能、抑制收缩变化和早期开裂,但硅灰过量则会降低混凝土的力学性能。综合考虑硫铝酸盐水泥混凝土在工程中的实际应用,确定胶凝材料的最佳配比为硫铝酸盐水泥:矿渣∶硅灰=87.5∶10∶2.5,在此配比下混凝土的初凝和终凝时间分别为72min和114min,8h抗压、抗折强度分别为28.2MPa和4.1MPa。  相似文献   

3.
研究了海水环境下掺入硅灰、粉煤灰、矿渣对硫铝酸盐水泥抗压强度、化学收缩和水化产物的影响规律.结果表明:当硅灰的掺量为2.5%时,水泥浆体的抗压强度比空白组高.矿渣掺量为10%的水泥浆体28 d抗压强度明显超过掺入硅灰和粉煤灰时的强度,60 d强度高于空白组.掺入2.5%硅灰后,水泥浆体的化学收缩增大;在水化早期,粉煤灰和矿渣的火山灰活性很低,导致水泥浆体的化学收缩降低.掺入10%硅灰加快了硫铝酸盐水泥3 d水化反应,钙矾石生成量增多,水泥浆体早期强度比掺其它掺合料有所提高,但体积过快膨胀会破坏其内部结构,对水泥浆体的强度发展不利.  相似文献   

4.
研究了海水拌和与海水养护条件下高贝利特硫铝酸盐水泥(HB-CSA)和普通硅酸盐水泥(OPC)胶砂的抗压强度和抗折强度,采用等温量热法、X射线衍射分析法和热重分析法表征了两种水泥的水化过程和水化产物,分析了海水对HB-CSA水化过程和力学性能的影响。结果表明:海水拌和未明显影响HB-CSA的早期水化过程,海水拌和与海水养护未改变其主要水化产物类型;海水拌和显著加快了OPC的早期水化,海水中的氯盐与OPC的水化产物反应,导致水化氯铝酸钙(Friedel盐)的生成。海水拌和与海水养护对HB-CSA的抗压强度影响较小,但降低了OPC的后期抗压强度。海水养护对HB-CSA和OPC抗折强度的提高较为明显,钙矾石(AFt)含量的增加是抗折强度提高的主要原因。HB-CSA的水化产物中未见Ca(OH)2和单硫型水化硫铝酸钙(AFm),避免了海水侵入后过量CaSO4·2H2O和AFt生成造成的混凝土膨胀开裂和强度下降的危害。  相似文献   

5.
沈燕  王培芳  张伟  陈玺 《硅酸盐通报》2020,39(5):1438-1443
硫铝酸盐水泥是近年来广受关注的重要低碳水泥品种,在快速修补和防渗堵漏应用中,需要掺入适宜的促凝剂来满足施工要求.研究了两种锂化合物对硫铝酸盐水泥凝结时间、强度的影响规律,并采用XRD和SEM手段分析水泥水化产物.结果表明,当掺入两种锂化合物之后,硫铝酸盐水泥的凝结时间有明显的降低,并且Li2 CO3对硫铝酸盐水泥的促凝作用比LiOH·H2 O更为显著;硫铝酸盐水泥的小时强度随着Li2 CO3掺量的增加而明显提高,LiOH·H2 O对水泥小时强度的影响并不明显,两种锂化合物均会降低水泥的后期强度;从水化产物的微观分析来看,硫铝酸盐水泥的水化产物种类并不会因掺加锂化合物而有所改变,Li2 CO3对硫铝酸盐水泥的1 d水化有所促进,而LiOH·H2 O不会对水化产物产生明显影响.  相似文献   

6.
本文通过海水拌合与淡水拌合性能对比的方式,研究了海水拌合对硫铝酸盐水泥性能的影响,并分析了其机理。研究表明,海水拌合硫铝酸盐水泥会导致硫铝酸盐水泥力学性能一定程度的劣化,但通过硫铝酸盐水泥熟料、水泥组分等的控制,可以消除此负面影响;海水拌合硫铝酸盐水泥导致力学性能劣化的根本原因是海水中的无机盐改变了液相中的离子种类、浓度,促进初始钙矾石的快速、大量生成,大幅增加了浆体的膨胀率所致。  相似文献   

7.
研究了聚羧酸系高效减水剂(PCE)和萘系减水剂(FDN)对硫铝酸盐水泥净浆工作性能及力学性能影响,通过XRD和SEM检测手段对水化产物进行表征.结果表明:两种减水剂对硫铝酸盐水泥净浆流动度的影响存在饱和点;相比于FDN型减水剂,PCE型减水剂对硫铝酸盐水泥净浆具有更好的减水效率及分散能力.PCE型减水剂阻碍硫铝酸盐水泥净浆早期水化,并降低硫铝酸盐水泥净浆1 d抗压强度;FDN型减水剂能够加速硫铝酸盐水泥净浆早期水化,缩短初凝和终凝时间,提高硫铝酸盐水泥净浆1d抗压强度.两种减水剂对硫铝酸盐水泥净浆3d后抗压强度及水化产物种类均没有影响.  相似文献   

8.
硫铝酸盐水泥化学需水量的计算   总被引:1,自引:0,他引:1  
计算了贝特-硫铝酸盐-铁酸盐熟料与终磨时加入的石膏完全水化时所需的化学需水量(简称CWD),给出了一系列反应式来预测CWD,这些工作需要大量的熟料化学分析,将其转化称准矿物组成,还需要丰富的水化机理方面的知识。还做了敏感性研究以找出需水量与水化作用的关系。化学需水量对石膏含量非常敏感,特别在质量分数质量0~39%范围内,以水灰经m(w)/m(c)表示(包含石膏中的水),当石膏质量分数由0增至30%  相似文献   

9.
几种外加剂对硫铝酸盐水泥性能的影响   总被引:3,自引:0,他引:3  
通过大量实验,作者研究了不同种类、不同掺量的外加剂对硫铝酸盐水泥的凝结时间、强度和膨胀率的影响。实验结果表明:木钙能有效地延缓水泥的凝结时间,烧石膏和明矾石在合适的掺量下能提高水泥的膨胀率和后期强度,抑制了水泥石后期强度的倒缩。采用XRD、DTA和SEM测试方法,分析了烧石膏和明矾石对水泥水化产物和水化机理的影响。  相似文献   

10.
研究了石膏对阿利特─硫铝酸盐水泥强度、凝结时间、干缩性等性能的影响。结果表明,掺加5%左右的石膏,可显著提高水泥强度,当掺量达约8%时,水泥的早期强度降低,更多的石膏则造成水泥安定性不良;石膏可延长水泥的凝结时间;存在适量石膏,水泥的干缩值减小。  相似文献   

11.
蒋卓  雷学文  廖宜顺  廖国胜 《硅酸盐通报》2016,35(12):4088-4092
研究了粉煤灰(FA)及其掺量对硫铝酸盐水泥(CSA)浆体的凝结时间、抗压强度和化学收缩的影响规律,并通过XRD、SEM等方法对72 h龄期时的水化产物进行分析.结果表明,粉煤灰缩短了硫铝酸盐水泥的凝结时间,当粉煤灰掺量为40%时,初凝时间和终凝时间分别缩短了76 min和94 min;掺入粉煤灰使得硫铝酸盐水泥的抗压强度降低,但在28 d龄期时,粉煤灰掺量为20%的硫铝酸盐水泥复合浆体的抗压强度仅略微降低;在硫铝酸盐水泥体系中掺入粉煤灰时,其浆体化学收缩随着粉煤灰掺量的增加逐渐减小,当粉煤灰掺量为20%和40%时,72 h龄期时的化学收缩值分别为0.138 mL/g和0.088 mL/g,较未掺粉煤灰时分别降低了26%和49%;微观分析表明,掺入粉煤灰后,72 h龄期时的水化产物主要是钙矾石和水化硅酸钙凝胶,并未发现氢氧化钙晶体.  相似文献   

12.
氯氧镁水泥具有放热量大、放热集中的特点.为了改善由放热量大引起的制品开裂、变形等缺点,本文采用水化热法,研究了内掺粉煤灰、硅灰和矿渣3种矿物掺合料对氯氧镁水泥水化历程的影响规律.研究结果表明,三者均能影响氯氧镁水泥的水化历程,延长水化时间,降低放热速率和总放热量,但三者影响效果不尽一致.当掺量为10%时,粉煤灰、硅灰和矿渣分别使镁水泥的诱导期延长了2%、6%和13%,第二最大放热速率分别降低了6%、16%和7%,3d水化放热量分别降低了9%、14%和6%;当掺量为30%时,粉煤灰和矿渣分别使镁水泥的诱导期延长了24%和45%,第二最大放热速率分别降低了29%和32%,3d水化放热量分别降低了27%和29%;三者对氯氧镁水泥水化历程的影响差异,与其矿物组成、比表面积、颗粒级配和形状等性质有关.实验结果为进一步寻找控制和改善氯氧镁水泥性能的合适外加剂提供了可靠的依据.  相似文献   

13.
将硫铝酸盐基促强减缩剂(SP-SRA)掺入到基准水泥中,并且按一定的比例设计了硫铝酸盐熟料-硬石膏-基准水泥的配合比,对宏观性能、水化过程、微观产物进行了对比分析.结果表明:掺SP-SRA的水泥各个龄期抗压抗折强度均高于硫铝酸盐熟料-硬石膏-基准水泥三元体系;掺SP-SRA的水泥早期水化放热速率大于硫铝酸盐熟料-硬石膏-基准水泥三元体系;XRD结果表明,掺SP-SRA的水泥水化生成的AFt(三硫型水化硫铝酸钙即钙矾石)含量多于三元体系生成的AFt,钙矾石的微膨胀性使得水泥石结构更加致密,有利于提高水泥石的强度,硫铝酸盐熟料-硬石膏-基准水泥体系有明显的AFm(单硫型水化硫铝酸钙)生成,即部分AFt转化成AFm.  相似文献   

14.
粉煤灰及其它矿物掺合料对新拌和硬化混凝土性能的影响   总被引:1,自引:0,他引:1  
对超细粉煤灰、硅灰、稻壳灰、矿渣微粉四种矿物掺合料对混凝土用水量及混凝土强度的影响进行了比较研究 ,分析了矿物掺合料需水性的影响因素 ,并对各矿物掺合料的减水作用进行了排序。  相似文献   

15.
主要研究了掺合料[m(矿渣):m(粉煤灰)=2:1]、水灰比对硫铝酸盐水泥基混凝土抗压强度、抗渗性的影响,并与普通硅酸盐水泥基混凝土进行对比。结果表明掺合料使硫铝酸盐水泥基混凝土早期和后期强度都明显降低,抗渗性降低,且掺量越高,其抗压强度、抗渗性降低越明显;另外,硫铝酸盐水泥基、普通硅酸盐水泥基混凝土的抗压强度、抗渗性都随着水灰比的减小,其抗压强度、抗渗性明显提高。  相似文献   

16.
研究了不同掺量硬石膏和脱硫石膏对高贝利特硫铝酸盐水泥熟料抗压强度、水化放热和水化产物的影响。结果显示:无论硬石膏或者脱硫石膏,当掺量为15%时,熟料的抗压强度达到最大值;当硬石膏掺量小于5%时,对熟料具有一定的缓凝作用,随着掺量的增加,硬石膏的加入会促进熟料的水化;当加入脱硫石膏时,同样促进了熟料的水化反应进程,与硬石膏相比,脱硫石膏在低掺量时并未有缓凝作用,且力学性能相差较小,由此可见利用脱硫石膏调控高贝利特硫铝酸盐水泥熟料性能是可行的。  相似文献   

17.
白色硅酸盐水泥(白水泥)具有较好的白度,是一种具有装饰效果的胶凝材料。针对该种水泥凝结时间长、早期强度发展慢及收缩变形较大等问题,采用高贝利特硫铝酸盐水泥对白水泥进行改性,系统研究了掺入10%~30%(质量分数)的高贝利特硫铝酸盐水泥对白水泥凝结时间、胶砂强度和自由膨胀率的影响。使用水化微量热仪、XRD、TGA、SEM等方法对复合胶凝体系水化过程、水化产物和微观形貌进行分析。结果表明:高贝利特硫铝酸盐水泥增大了白水泥水化放热率,显著缩短了白水泥的凝结时间;改性后的白水泥水化产物生成了大量的AFt,穿插生长在C-S-H凝胶中,消耗掉了部分Ca(OH)2,使结构更加致密,强度更高,膨胀性能更好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号