首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
锂离子电池温度变化热模拟研究   总被引:1,自引:0,他引:1  
利用锂离子电池热模型对环境温度,热交换系数,电池大小以及电池荷电状态对电池温度变化的影响进行了模拟计算研究;结果表明:环境温度越高,电池热交换系数越小,电池越大,荷电状态越高,电池发生热失控的温度越低,概率越大。同时还模拟了绝热条件下锂离子电池的自放热过程。  相似文献   

2.
分别对软包三元和磷酸铁锂锂离子电池模组进行了热失控扩展试验研究。采集电池电压、温度等特征参数,研究锂离子电池在加热触发热失控时的特点及热失控在锂离子电池间传播的特征。对比两款电池的热失控特性及热失控扩展特性,结果表明:试验条件下,三元锂离子电池热失控时释放能量速度快,释放能量集中,更容易发生热失控扩展。  相似文献   

3.
李亚楠  潘芳芳  赵金保 《电池》2022,52(2):228-231
针刺是评估锂离子电池安全性的各种滥用条件中最为苛刻之一,也是锂离子电池安全测试的重点关注项目。综述锂离子电池针刺安全性相关研究进展,包括影响锂离子电池针刺安全性的因素、提高锂离子电池针刺安全性的方法及作用机理、锂离子电池针刺引发热失控的机理研究等3个方面。基于上述研究结果分析认为:优化设计针刺内短路模式,可以降低针刺热失控的风险。  相似文献   

4.
5.
王丽娜  杨凯  刘皓  惠东  张慧卿 《电源技术》2012,36(12):1780-1782
锂离子电池尤其是大容量锂离子电池在放电过程中会产生大量热量,如果不及时进行散热处理会严重影响电池整体的性能,也会产生安全隐患。利用STAR-CCM+软件,以软包装锂离子单体电池为研究对象,建立锂离子电池的传热模型,分析锂离子电池在放电过程中发热量、温度分布等变化规律,并讨论不同对流换热系数对电池温度的影响。  相似文献   

6.
崔潇丹  丛晓民  赵林双 《电池》2021,51(4):407-411
综述锂离子电池热失控产物情况和产气机理,并归纳总结热失控气体危险性研究进展.锂离子电池热失控气体主要成分为CO2、CO、H2和碳氢化合物;燃爆危险性因素主要为爆炸极限、爆炸超压及层流火焰速度等.电池的材料种类、荷电状态(SOC)和温度等因素均会对产气造成影响,进而影响热失控气体的危险程度.对锂离子电池热失控后产生气体的...  相似文献   

7.
刘奕  张旭  陈现涛  贺元骅 《电池》2020,(3):237-241
开展不同低压(90 k Pa、70 k Pa、50 k Pa和30 k Pa)下的热失控实验,研究软包装锂离子电池在民航飞行低压环境下的热安全性。电池在不同压力下的热失控行为相似,喷射端均始于电极极耳一侧;随着压力的降低,热释放速率峰值、耗氧量与烟气温度等均有下降,而燃爆响应时间逐渐增加。在30 k Pa压力下,电池燃爆响应时间为799 s,比90 k Pa压力下延长了254 s,火险指数值最高,高温危险性降低。表面峰值温度随环境压力降低的波动不大,平均保持在772℃,但初爆温度有明显增加;CO2体积分数与烟雾密度均有所下降。在90 k Pa压力下,CO2体积分数最高可达1. 77%,且烟雾密度最大。  相似文献   

8.
宁凡雨  刘逸骏  谭立志  王松蕊  刘兴江 《电源技术》2020,(8):1102-1104+1190
提供了一种锂离子电池热失控模拟方法,对LiCoO2/石墨和LiNi1/3Co1/3Mn1/3O2/石墨电池的热失控行为进行了模拟研究。通过测试电池材料的热性质并对其热反应参数进行拟合,建立了锂离子电池热模型。模拟得到了电池热失控过程的温度变化和材料热反应情况,预测了电池热失控温度并揭示了热失控机理。该模拟结果与电池热失控实验结果吻合良好,证明了该方法的准确性。本工作的模拟方法有望应用于其他锂离子电池体系,对锂离子电池的热失控预警和安全性能改善具有重要意义。  相似文献   

9.
胡斯航  王世杰  刘洋  张英 《电池》2022,52(1):96-100
针对锂离子电池在循环过程中可能出现的燃烧、爆炸等安全问题,在概述电池热失控滥用工况及诱发机制的基础上,总结电池在宽温域内可能出现的性能衰退、失效形式和热失控风险,并提出电池在低温、正常温度和高温等环境下工作的保障措施,以促进锂离子电池安全发展.  相似文献   

10.
锂离子电池热安全性的研究进展   总被引:5,自引:3,他引:2  
综合分析了锂离子电池主要材料的产热特性、相互反应产热特性的研究与发展.SEI膜、电解液、正极的分解,负极与电解液、负极与粘合剂的反应等,是主要的产热过程,这些反应的放热量决定了锂离子电池的安全性.  相似文献   

11.
动力蓄电池作为纯电动汽车的动力来源,是提高整车性能和降低成本的关键一环,其温度特性直接影响电动汽车的性能、寿命和耐久性。针对锂离子电池在低温环境下放电容量低及单体之间温度不均匀的问题,合理设计了电池包结构,选择合适的热管理方式,保证电池包内各个单电池工作在合理温度范围内的同时尽量维持包内各个电池及电池模块间的温度均匀性。  相似文献   

12.
该研究旨在探究电池间距对锂离子电池热失控传播的影响,并确定无法引发电池热失控的最小电池间距,同时研究不同液氮喷射方式对热失控传播的阻断效果。实验结果表明,电池间距对热失控的传播有显著影响。当间距达到4 mm时,热失控基本无法传播。各种液氮喷射方式都能有效阻断热失控传播,但直接喷射热失控电池是最理想的方法。  相似文献   

13.
以24 Ah、3.65 V三元软包装锂离子动力电池为研究对象,对电池单体不同工况充放电热特性、电池模块散热方案及基于液体的电池包热管理系统进行研究。随着充放电倍率增大和环境温度的降低,电池发热功率增大,温升显著增加;电池模块散热设计中,采用电池侧边散热的质量轻、成本低,相比于采用大面散热,充放电温升和纯冷却温差分别降低2.1℃和0.5℃;采用液体热管理的电池包具有良好的热特性,-20℃低温加热,温差为7.9℃,温升速率为0.52℃/min,40℃下1.5 C快充,最高温度为47.9℃,最大温差为3.9℃。  相似文献   

14.
锂离子电池在各种温度情况下的性能响应是目前关注的热点。总结了锂离子电池在低温下的性能表现,归纳了不同情况下锂离子电池性能的影响因素,分析了应对性能衰减的新材料、新技术及控制策略,对认识和提升锂离子电池热响应特性有指导和借鉴意义。  相似文献   

15.
马勇  张量  王亦伟  蒋方明 《电池》2021,51(1):41-45
以方形磷酸铁锂(LiFePO4)锂离子电池为对象,研究充放电倍率、环境温度对电池性能的影响,确定电池热生成速率与荷电状态(SOC)的关系式.为寻找热安全的温度阈值,开展电池热失控实验.在适宜的温度区间(25~40℃)工作时,电池的热性能良好,内阻和热生成随着环境温度的升高而变小;电池正极极耳温度要高于负极极耳,正极极耳...  相似文献   

16.
钴酸锂正极锂离子电池的过充电安全性   总被引:1,自引:0,他引:1  
王莉  李建军  高剑  何向明 《电池》2012,42(6):299-301
分析了影响锂离子电池安全性的主要因素和关键材料。通过钴酸锂(LiCoO2)表面包覆和使用电解液阻燃添加剂,研制了具有较好耐过充安全性的原型LiCoO2正极锂离子电池。该电池经1C、20 V过充电,没有燃烧的现象。  相似文献   

17.
刘全义  朱倩  朱文田  伊笑莹 《电池》2022,52(2):172-176
自主搭建热失控燃爆实验平台,在气凝胶毡厚度为1 mm、3 mm、6 mm和10 mm的条件下,对100%荷电状态(SOC)的18650型锂离子电池进行燃爆实验,采集和分析电池的温度、烟气浓度及质量损失,分析气凝胶毡厚度对电池热失控特性的影响。气凝胶毡厚度的增加对电池热失控触发温度和峰值温度影响较小,但能减缓热失控行为的传播速度,当厚度为10 mm时,能阻挡热失控行为的传播。CO与CO2的浓度变化趋势相同,O2则相反;厚度对烟气浓度变化的影响较小。当厚度为1 mm、3 mm、6 mm时,电池质量损失差值较小;而当厚度为10 mm时,电池的质量损失约为其他阻隔厚度的1/4。当气凝胶毡的厚度增加到一定值时,才会对锂离子电池的质量损失产生较大的影响。  相似文献   

18.
采用电加热测试系统,研究了电池电量、充电过程及放电过程对恒定加热条件下18650锂离子电池热失控过程的影响。研究表明:恒定加热功率为20 W时,电量越高,锂离子电池热失控起始温度越低,放热反应越剧烈;充电电流越大,热失控起始温度越低,放热反应越剧烈;相同条件下,放电电池比未放电电池热失控起始温度高。  相似文献   

19.
贺元骅  余兴科  樊榕  智茂永 《电池》2022,52(3):337-341
热管理系统可确保动力锂离子电池的运行安全,其中冷却技术是主要方面。分析锂离子电池热失控发生过程,总结空气冷却、液体冷却、热管冷却、相变材料冷却和复合冷却等热管理技术的研究现状,提出动力锂离子电池热管理技术的发展方向。空气冷却和液体冷却技术存在控温效果较差、消耗额外能量等缺点;热管冷却具有成本较高、结构复杂等不足;相变材料冷却可降低锂离子电池的峰值温度,提高电池组的温度均匀性;复合冷却可综合各冷却方式优点,应用前景良好。  相似文献   

20.
圆柱形锂离子电池的三维热模拟   总被引:1,自引:0,他引:1  
何亮明  杜翀 《电池工业》2010,15(3):151-155
建立了一个典型10Ah动力用圆柱形锂离子电池在1 C放电条件下的三维热模型,并采用相关软件得到了数值解,进而用图示的方法给出了该电池在上述工作状态下的温度分布图。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号