共查询到19条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
电力负荷预测对电力系统的有效运行是至关重要的.电力负荷预测领域迫切需要更精确、更稳定的电力负荷预测方法和技术.为进一步提高电力负荷预测精度,利用互补性原理建立了一种线性组合预测策略.该方法由一个基于互补原理的单项模型选择策略,及线性组合模型组成.选定的单项模型包括流行的线性模型,即ARIMA模型,和流行的非线性模型,即支持向量回归(SVR)模型.该线性组合结构可以有效地提取非线性电力负荷数据的特点.澳大利亚电网真实数据的实验运行验证了该模型的有效性. 相似文献
5.
以某城市需水量为研究对象,运用改进的支持向量基模型对该地区1991年到2001年的用水量进行模拟计算,并用该市2002年和2003年的用水量进行模型检验,与GM(1.1)模型所得的结果作比较,分析证明了改进的SVR模型方法能取得更好的结果。 相似文献
6.
基于PCA和支持向量机的径流预测应用研究 总被引:1,自引:0,他引:1
影响径流量的因素很多,并且这些因素与径流量之间存在着复杂的非线性关系。将主成分分析和支持向量机相结合,首先进行特征提取,降低数据维数,获取数据的主要信息;然后利用支持向量机建立径流预测模型,取得了非常好的效果。并与支持向量机回归模型进行了比较,结果表明该方法具有更好的预测精度,值得推广。 相似文献
7.
8.
支持向量机是建立在统计学理论之上的机器学习技术。提出了混凝土28 d抗压强度预测的一种新方法,即支持向量机回归方法。该方法根据有限的学习样本,建立了各种影响因素和混凝土抗压强度之间的一种非线性映射,可以对混凝土强度进行预测。以实际样本数据进行训练,并对测试样本进行了预测。预测结果表明,支持向量机方法有着良好的泛化能力,优于人工神经网络建模方法。 相似文献
9.
10.
为进一步提高径流预测精度和泛化能力,根据回归支持向量机(SVR)特性及基本原理,提出考虑不同影响因子(输入向量)的SVR集成预测模型,以云南省南盘江西桥站1961—2007年径流预测为例进行实例研究。首先,利用相关分析法选取年径流预测的若干影响因子,依次构建不同影响因子的SVR单一模型对研究实例进行预测,并构建对应的RBF模型作为对比预测模型;然后,采用加权平均和简单平均2种方法对具有较好预测精度和互补性的单一模型的预测结果进行综合集成。结果表明基于SVR的加权平均和简单平均2种集成模型径流预测的平均相对误差绝对值分别为1.27%和1.54%,最大相对误差绝对值分别为2.99%和2.74%,其精度和泛化能力均大幅优于各单一模型以及基于RBF的加权平均和简单平均集成模型,表明加权平均SVR和简单平均SVR集成模型具有较高的预测精度和泛化能力。相对而言,加权平均集成模型赋予了预测效果好的模型更大的权重,预测精度和泛化能力均优于简单平均集成模型。预测模型和方法可为相关预测研究提供参考和借鉴。 相似文献
11.
12.
13.
由于复杂工程地质条件和环境因素的综合影响,边坡变形呈现复杂非线性演变特征。借助支持向量机(SVM)可有效解决小样本、高维数、非线性等问题的优点,对边坡实测位移进行数据挖掘,预测边坡变形趋势。为了避免人为选择支持向量机模型参数的盲目性,提高模型预测精度和泛化能力,引入改进的蚁群算法(ACO)对模型参数进行寻优,结合位移时序滚动预测方法,建立了适合边坡变形预测的ACO-SVM模型。将该模型应用于2个边坡的位移预测,研究结果表明,ACO-SVM预测精度高,模型建立正确。与遗传算法、粒子群算法优化SVM的预测结果相比,ACO-SVM模型预测精度更高,具有更强的泛化能力,预测结果更加合理,在边坡变形预测中具有一定的工程应用价值。 相似文献
14.
15.
采用基于支持向量机的预测模型对水库中长期入库径流进行预报,建立径流预报的SVM模型。预报因子的优劣决定着预测精度的高低。为了提高预报精度,尝试采用模糊优选法对预报因子进行优选。将所建模型应用于新疆雅马渡站的径流预测中,并与没有进行预报因子优选的SVM模型进行比较。结果表明,进行预报因子优化后的SVM模型明显提高了径流的预报精度,具有更好的应用价值。 相似文献
16.
电能扰动的分类需要信号特性提取和分类器构造2个阶段,文中采用相空间重构和支持向量机的组合,提出了一种全新的电能扰动信号的分类方法。首先利用相空间重构方法构造扰动信号轨迹,通过编码获得二进制轨迹图像。针对该图像定义了4类具有区别性的指标,以表征不同扰动类型的特性。然后将特性指标作为支持向量机分类器的输入矢量,实现自动分类识别。算例表明该方法计算量少,正确率高,所需训练样本少,可以有效分类识别电压暂降、电压瞬升、电压中断、脉冲振荡、谐波、闪变等6种电能扰动。 相似文献
17.
在比较各种水文预报方法的基础上,研究利用一种改进的支持向量机算法(SVM)对水文进行预测。阐述支持向量机理论的理论基础和原理,针对缺陷,提出基于人工鱼群优化的支持向量机算法(AFSVM),介绍人工鱼群算法基本理论和AFSVM,建立基于人工鱼群优化的支持向量机的拉萨河水文预报系统模型,并与标准的支持向量机预测模型进行对比。实验结果表明,AFSVM与标准SVM模型的预测精度差不多,AFSVM的训练速度优于标准SVM训练速度。 相似文献
18.
《南昌工程学院学报》2014,(1):4
<正>Introduction of Science Research Program Assumed by Nanchang Institute of Technology(No.71301067)Recent years has seen more than 100 wide range blackouts of regional grids in China,any one of which has caused huge economic loss and undesirable social impact.Against the backdrop of the power transmission from West to East,the mutual supply of South and North as well as the interconnection of national power grid,power grid in China is destined for dramatic changes.By the end of 2011,the installed capacity has reached a peak of 10 billion 相似文献
19.
风电功率预测对于风电接入电网后上网限电有非常重要作用,同时也对风电的市场竞争力有很大的支持效应。从现阶段风电功率负荷预测的现状出发,在研究当前风速预测方法和预测效果的基础上提出用LSSVM来进行风速的预测方法,与其他几种风速预测方法的误差进行比较表明,LSSVM在预测风速方面具有一定的优越性。经过实例测算表明,效果较为理想。 相似文献