首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对目前没有成熟的交流电缆中间接头载流量校核方法,搭建了土壤直埋110 kV电缆中间接头和电缆本体稳态载流量三维仿真模型,利用有限元对比研究环境温度、土壤导热系数和敷设深度对电缆中间接头和本体稳态载流量的影响规律。结果表明:在不同环境温度、土壤导热系数和敷设深度下,电缆中间接头载流量始终小于电缆本体载流量,土壤导热系数为0.5 W·(m·K)-1、环境温度为293 K以及敷设深度为1.75 m时的中间接头载流量相较于相同条件下的本体载流量减小了10.8%。因此,如按照电缆本体载流量校核电缆载流能力,将导致中间接头主绝缘处于加速热老化状态。为确保电缆长期稳定运行,建议以本体载流量确定电缆载流时应留有一定裕度。  相似文献   

2.
为了评估110 kV电压等级电缆中间接头的载流能力,采用热路法分析了中间接头与电缆本体的径向导热差异,及中间接头轴向传热的影响范围。基于理论分析,建立了有限长中间接头1/2轴切面几何模型,利用有限元仿真工具,迭代计算了中间接头载流量。模拟空气敷设环境,进行了大电流温升实验,得到了中间接头局部温度分布规律。研究结果表明:中间接头径向温差大于电缆本体径向温差,对应中间接头径向热阻大于电缆本体径向热阻;中间接头轴向传热影响范围小,靠近中间接头的电缆本体导体温度轴向分布均匀;随着负荷增大,中间接头与电缆本体的导体温差增大;空气敷设环境下,考虑中间接头的110 kV电缆线路载流量降低145 A;采用有限长轴切面几何模型仿真计算中间接头导体温度,计算相对误差小于6%。该研究结果可以为电力调度及运行维护部门考量电缆中间接头对110 kV电缆线路载流量的限制作用提供参考。  相似文献   

3.
为了避免电缆遭受外力破坏,防止中间接头故障后蔓延至临近电缆,电缆中间接头需加装防爆盒,如此势必延长中间接头热传导的路径,影响其散热性能。为了进一步探究配电网三芯电缆中间接头加装防爆盒后的温度及载流特性,本文以20kV三芯电缆中间接头为例,建立考虑接触电阻的三芯电缆中间接头磁-热耦合模型,计算了289A电流下含防爆盒的中间接头温升,对比运行数据验证了仿真计算的准确性,然后进一步分析了防爆盒对中间接头载流量的影响规律。结果表明:防爆盒内的空腔会大大降低中间接头的散热性能,相比于电缆本体时,载流量约下降37.1%,而灌注环氧树脂ab胶后,可以大幅度增强中间接头的散热,相对于未灌胶时载流量提升近41.1%。研究结果可为防爆盒的设计及中间接头运维的制定提供参考,有益于电缆的安全稳定运行。  相似文献   

4.
随着世界各地夏季环境温度不断升高,电缆中间接头的工作环境正在恶化。为此,文中基于有限元法建立10 kV三芯电缆及其中间接头仿真模型,分析不同环境温度和不同电流下中间接头的温度分布。首先,开展温升试验,得到电缆中间接头表面的稳态温度,验证仿真模型的准确性;然后,拟合不同环境温度下中间接头高压载流导体表面温度与电流的函数关系,以此可以计算不同极端环境温度下中间接头的极限安全载流量。结果表明,环境温度升高对中间接头高压载流导体表面的温度分布趋势几乎没有影响,在外护套外表面处也满足此规律。中间接头高压载流导体表面温度与电流近似成二次函数关系。当电流幅值为480 A、环境温度为75 ℃时,高压载流导体表面与外护套外表面最高温度分别是环境温度为30 ℃时的1.57倍与1.69倍。当环境温度超过55 ℃时,按照国标规定的持续允许载流量会使中间接头高压铜导体表面温度超过最高允许运行温度90 ℃。考虑到自2020年起夏季环境温度持续增加,现行国标中10 kV铜导体三芯交联聚乙烯绝缘电缆中间接头的持续允许载流量须被修正。  相似文献   

5.
中间接头是高压电缆线路运行中故障多发的薄弱环节,电缆系统的载流量会因中间接头的结构特点而受到限制。直流下电缆载流量的约束条件与交流不同,不能直接依据交流电缆中间接头载流量的计算方法。为此,文中以直流电缆中间接头的温度场计算等理论研究为基础,提出以接头导体最高允许工作温度和绝缘层内外表面最大允许温差为两个约束条件,确定高压直流电缆中间接头载流量的方法。通过案例分析,将文中方法与IEC 60287标准计算的载流量进行了对比,并就环境温度对载流量的影响进行了分析。结果表明,中间接头的确是电缆系统载流量计算限制条件之一。两个约束条件下的载流量与环境温度的关系曲线将相交于一点,当环境温度小于该点对应温度值时,接头载流量的决定性约束条件为绝缘层内外表面最大允许温差;当环境温度大于该点对应温度值时,接头载流量的决定性约束条件为接头导体最大允许温度。研究结果可为直流电缆系统运行与载流量设计提供参考。  相似文献   

6.
温度是制约电缆接头载流能力的直接因素,研究接头的温度场分布对实现接头载流能力的准确评估至关重要。论文建立了接头的二维轴向仿真模型,对不同负荷下接头进行温度场仿真分析,并设计了高压电缆接头稳态温升实验,实测了不同负荷下的接头稳态温度分布。最后,应用接头二维轴向仿真模型研究了环境温度、对流换热系数、主绝缘件和保护壳填充胶导热系数变化对接头稳态温度分布的影响,进而提出了电缆全线载流量的提升策略。实验和仿真结果对比表明,不同负荷下接头二维轴向仿真模型对接头导体温度的计算误差绝对值不超过10%。因此,采用接头二维轴向仿真模型计算接头温度场分布能够满足工程应用的需求。  相似文献   

7.
电缆接头线芯温度计算是实现电缆载流量预测重要环节。该文通过三芯电缆接头结构分析其散热路径,进一步考虑了电缆接头的轴向散热,提出了改进的热路模型。以10 kV三芯电缆中间接头为例开展有限元温度场计算,并根据温度-热源的响应实现稳态热路模型的参数辨识。同时,分析了不同电缆电流以及环境散热条件下稳态热路模型的等效性,与有限元仿真结果吻合良好。该模型可以有效提高电缆接头热点计算的效率。  相似文献   

8.
目的当整条电缆线路被敷设时,由于环境的变化引起部分电缆段热阻高于周围环境介质的区域,导致处于此区电缆段导体温度也高于线路中剩余缆段,从而影响整条电缆的载流量下降。方法根据电缆周围环境介质热特性不同,分析穿过不利散热区时的电缆同时产生径向和轴向热流,利用调和平均法对电缆薄层处理,从而建立和简化不利散热区的三维离散热路模型,修正外热阻计算参数;基于IEC60287电缆载流量计算的基础上,迭代计算三维热场中电缆的稳态载流量。结果通过对单回路三根型号YJV8.7/10k V 1×300电缆的仿真计算,得到电缆轴向导体温度分布曲线和两个温度区域的排管敷设交联聚乙烯电缆的载流量。结果显示电缆稳态时载流量降低达40%以上。结论穿过不利散热区的电缆轴向温度和载流量的计算分析,为电力部门相关工作人员确定电缆载流量提供了参考数据。  相似文献   

9.
电缆载流量是电力电缆运行中的重要参数。为给敷设于隧道中的超高压电缆运行提供参考,本文根据实际电缆隧道结构和内部电缆排布方式,运用COMSOL Multiphysics仿真软件,建立电缆隧道三维几何模型,进行温度场和流体场的耦合仿真计算。采用有限元分析法,对不同运行方式和环境条件下的温度场和流体场分布规律进行分析,计算隧道敷设超高压电力电缆载流量。研究表明:最高温度出现在电缆导体处,温度沿着电缆径向逐渐降低,出口截面处的温度和风速相对入口截面处有所增大;随着电流负载的增加,电缆发热对周围环境温度的影响也随之增加;双回路和四回路敷设时电缆的稳态载流量高于八回路敷设时的电缆稳态载流量;电缆表面温度随着通风速率的增加而逐渐减小。  相似文献   

10.
为深入研究微间隙放电下电缆接头温度与应力的变化规律,探究其对电缆接头复合界面的开裂影响,本文以110kV电缆中间接头为原型,结合实际电缆接头中气隙最常出现的位置建立三维仿真模型。以温度、应力及界面开裂量作为衡量电缆接头损伤程度的指标,在考虑接头附件与电缆本体间初始紧握力与气隙压强的情况下,利用有限元法计算出间隙放电能量...  相似文献   

11.
温度分布是直流电缆运维检修的重要参数之一。由于高压直流输电起步较晚,高压直流电缆的研究不如交流电缆丰富、深入,因此对其温度分布影响因素的研究具有重要意义。通过Comsol有限元软件建立二维对称模型,计算±500 kV高压直流XLPE电缆稳态运行时的温度分布,求出适合电缆长期运行的载流量,并从载流量和环境温度两方面研究温度分布变化。仿真结果表明:载流量对温度分布变化具有较大的影响,当环境温度高于15℃时,导体温度约束载流量大小,环境温度低于15℃时,绝缘层最大允许温差约束载流量大小。最后通过实验验证了仿真的正确性。  相似文献   

12.
高压直流电缆稳态载流量的准确计算对于其传输能力的充分利用具有重要意义。首先,提出了高压直流电缆稳态载流量解析计算方法,该方法同时考虑了线芯导体最高长期允许温度和绝缘层最大允许温差。其次,利用该方法对?160 kV交联聚乙烯直流电缆稳态载流量进行了计算,并用有限元法进行了验证。最后,研究了敷设环境温度、线芯导体最高长期允许温度和绝缘层最大允许温差对直流电缆稳态载流量的影响规律,发现考虑线芯导体最高长期允许温度和考虑绝缘层最大允许温差的直流电缆稳态载流量随敷设环境温度的变化曲线可能存在交点,当敷设环境温度高于交点温度时,线芯导体最高长期允许温度决定了稳态载流量;当敷设环境温度低于交点温度时,绝缘层最大允许温差决定了稳态载流量。  相似文献   

13.
电缆接头是电缆线路运行中的薄弱环节,接头的绝缘状态与接头内部的温度直接相关,研究三芯电缆接头内部温升具有重要意义。首先,建立了三芯电缆接头及本体的3维模型,根据接头不同部位的形状采用不同的剖分方式,并将不同形状的网格通过网格耦合进行连接。然后,在考虑接头接触电阻情况下研究了模型中电缆本体的长度对接头温度分布的影响,选择合适的电缆本体长度,并仿真了三芯电缆接头模型的稳态和暂态温度场。最后,在三芯电缆接头温升试验平台开展试验,比较了接头内部温度的测量值和仿真值,相对误差不超过9%。结果表明该文建立的三芯电缆接头模型计算结果准确,可满足工程应用需求。  相似文献   

14.
刘治琦 《电世界》2021,62(6):30-31
在电缆设计中,电缆载流量是电缆运行中受环境条件和负荷影响的重要动态运行参数,涉及输电线路的安全可靠、经济合理运行,以及电缆寿命问题[1]. 在根据电缆载流量设计电缆时,我们一般考虑的是其长期稳定的负载能力,可以通过稳态下的电缆导体温度计算得出相应截面积.但在一些特殊场合,电缆的运行状态可能还没有达到极限运行温度或短暂超过极限运行温度后即停止运行.在间歇运行过程中,电缆处于升温与降温的变化过程,采用稳态设计方案可以满足运行要求,但是会造成截面积设计偏大,设计裕度过大的问题.  相似文献   

15.
电力行业长期以来使用IEC 60287标准对地下电缆温度场和载流量进行计算,但该方法只适用于简单条件下的结果计算,不适用于过程分析。为研究排管敷设电缆工作时温度场和载流量之间的相互关系,为分析不同外界条件对温度场和载流量的影响情况,利用有限元法建立了排管敷设电缆温度场的仿真模型,对电缆的温度和载流量进行计算和分析。用IEC 60287标准对仿真模型进行验算,验证了仿真模型的有效性和准确性。由仿真结果可知,电缆工作时热量呈辐射型向四周传递,最终经过地表和左右远处土壤进行散热;管道内部受空气影响而难以散热。对地表温度、电缆间距和埋深等参数进行调整,分析了不同外界条件对排管敷设电缆温度场和载流量的影响,得出电缆间距在0.5 m、埋设深度在1.5 m以内时,调整间距和埋深会对电缆的温度和载流量产生较大影响。  相似文献   

16.
为研究电缆接头的载流能力,采用高压电缆温升实验系统,对110 kV 630 mm~2电缆进行稳态电流实验、短时负荷实验以及周期性负荷实验,通过在电缆接头关键位置布置热电偶,分析电缆接头处的温度场分布特点。结果表明:电缆接头及附近本体间存在轴向温度分布,接头的线芯温度和径向温差均高于电缆本体。由于电缆接头温度场分布特点,接头成为限制电缆线路载流量的瓶颈。  相似文献   

17.
电缆接头作为电缆系统中的绝缘薄弱环节,在制造和长期运行过程中可能会形成绝缘缺陷,导致电缆绝缘发生电气或热击穿,进而造成电力系统故障。采用多物理场仿真软件构建了10 kV交流XLPE电缆接头的三维仿真模型,模拟了电缆本体与接头周围的电场、磁场及热场分布,分析了造成电缆本体与接头处不同电磁 热场分布的原因,为电缆接头的优化设计提供了参考依据。  相似文献   

18.
超高压海底电缆线路跨度大,运行环境复杂多变,不同敷设环境下海底电缆的输送容量也不尽相同,有必要对典型敷设环境下超高压海缆输送载流量进行具体分析。文中基于IEC 60287标准建立考虑外界敷设环境影响下的500 kV交流XLPE超高压海底电缆的稳态热路模型,对不同敷设段、不同敷设方式、不同环境温度以及不同埋设深度对海缆载流量的影响规律进行分析,并建立超高压海底电缆磁-热-流多物理场耦合有限元仿真模型对稳态热路模型计算结果进行验证。结果表明:海缆登陆段为整条线路的载流量瓶颈段,当登陆段海缆采用管道敷设时,其载流量要比采用土壤直埋敷设时的载流量降低约150 A。海缆载流量随着外界温度的升高以及土壤埋设深度的增加而逐渐降低。有限元计算结果验证了文中所建立的热路模型计算结果的准确性。  相似文献   

19.
载流量是高压电缆最重要的运行参数之一。通过仿真计算不同缓冲层结构高压电缆的载流量,以型号YJLW03-64/110-1×630的高压电缆为例,建立电缆的三维模型;运用COMSOL Multiphysics仿真软件,计算具有不同缓冲层结构高压电缆的载流量,并利用温升试验验证模型的准确性。由仿真计算结果分析得出,电缆载流量随缓冲层气隙层厚度增大而减小,金属护套采用平直铝及绕包金布都会使高压电缆的载流量增加。研究成果可以为电缆的缓冲层结构生产制造提供理论依据。  相似文献   

20.
高压直流海底电缆稳态载流量的计算对海底电缆工程的设计和运行非常关键。该文利用COMSOLMultiphysics仿真软件,建立±500kV直流海底电缆在J型管敷设环境下的三维电-热-流耦合模型。针对J型管位于海面之下和海面之上2种情况,分别计算海缆的稳态载流量、温度分布以及电场分布。结果表明,J型管海缆运行在海面之下时载流量比运行在海面之上高约2倍。此外,发现海缆绝缘中的电场分布取决于绝缘内外层的温度差,当绝缘层内、外表面温差等于6.0℃时,整个绝缘层电场均匀分布,大小为16.7kV/mm;当绝缘层内、外表面温差大于6.0℃时,海缆绝缘电场分布沿电缆径向由内向外逐渐增大;当温差小于6.0℃,绝缘电场分布沿电缆径向由内向外逐渐增小。另外,减小J型管壁厚和增大J型管外径可以在一定程度上提升海缆的稳态载流量,对运行在海面之上的J型管内电缆施加通风冷却可将其稳态载流量提升约73%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号