首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
以含有机硅苯乙烯-丙烯酸酯共聚乳液(简称"苯丙乳液")为基料,制备了含有2种不同粒径空心玻璃微珠的复合阻尼材料。采用傅里叶红外光谱仪和动态力学分析仪研究了乳胶膜的化学结构、阻尼性能和玻璃化转变温度;通过扫描电子显微镜表征了乳胶粒的粒径分布以及复合阻尼材料中玻璃微珠的分布及破碎情况;采用漆膜冲击仪、电子万能试验机和自制的阻尼系数测定仪研究了不同型号及其不同配比的空心玻璃微珠对复合阻尼材料的力学性能以及阻尼性能的影响。结果表明,粒径大的空心玻璃微珠相比于粒径小的空心玻璃微珠更易破碎,且粒径小的空心玻璃微珠与基体界面黏结性更好;而混合添加则对阻尼性能的提高更有利;随着基体内部混合空心玻璃微珠中粒径较小的微珠的质量分数的提高,复合阻尼材料的冲击强度和拉伸强度随之增大;当大粒径和小粒径空心玻璃微珠的质量比为1:1,且其总含量为15%(质量分数,下同)时,复合阻尼材料的阻尼性能为最佳。  相似文献   

2.
李会 《玻璃》2014,41(8):49-51
锡掺杂氧化铟(InO2-SnO2,ITO)薄膜因具有良好的电学及透过性能而被广泛应用。本文以化学钢化玻璃为基体,采用磁控溅射对玻璃基体进行锡掺杂氧化铟(InO2-SnO2,ITO)薄膜的制备。研究了镀膜工艺对玻璃基体力学及透过性能的影响。研究结果表明:镀膜对玻璃强度有一定影响,随着镀膜温度的升高及时间的延长,玻璃的强度和表面应力逐渐下降。ITO薄膜的制备也对玻璃的透过性能有所影响,从92%降低至85%。虽然镀膜工艺降低了玻璃强度及透过性,但是总体影响不大。镀膜温度小于320℃,镀膜时间为1 h,对玻璃性能的影响比较小。  相似文献   

3.
透明陶瓷作为一类既具有类似玻璃高光学透明性又兼具类似单晶高熔点、高强度、高硬度和高化学稳定性等优异理化性能的结构功能一体化材料,可在多种极端环境(耐高温、抗冲击和抗强辐射等)下作为光学窗口应用,还可以通过稀土离子或过渡离子掺杂等手段发展其激光、荧光等性能。在目前已经发展出的陶瓷材料体系中,Mg-Al-O-N体系中几种透明陶瓷材料(如Al2O3、MgO、AIN、MgAl2O4、AION、MgAION等)是研究最为广泛的透明陶瓷材料。本文简述了这几种材料结构、性能、制备研究进展和应用情况,并对其未来的发展进行了展望。  相似文献   

4.
玻璃盖板为提升及保证其强度性能,均需进行化学强化,因此化学强化效果对玻璃盖板的质量起着关键作用。通过多种强化条件的实验测试,确定在不同强化条件下,玻璃盖板性能存在显著性差异,同时对四种强化性能(表面应力、落球冲击、翘曲、4PB)趋势做了进一步分析。  相似文献   

5.
金属玻璃作为一种新材料,它与其他材料相比具有特别之处。金属玻璃由于其独特的无序结构,兼有一般金属和玻璃的特性,因而具有很多优异的力学、物理和化学性能,如高弹性、高强度、低模量、高耐磨、耐腐蚀、抗氧化及抗辐照、优异的软磁性能等,它具有广泛的应用前景。首先分析了金属玻璃到底是金属还是玻璃,介绍了金属玻璃是什么时候诞生的,研究了金属玻璃的形成,阐述了金属玻璃非常优异的性能,同时指出了金属玻璃的应用十分广泛并将走进生活。  相似文献   

6.
CaO掺杂对钡硼硅系微晶玻璃性能的影响   总被引:1,自引:0,他引:1  
唐波  李波  徐明江 《硅酸盐通报》2014,33(8):2016-2020
本文采用固相法制备了具有高热膨胀系数的BaO-B2O3-SiO2 (BaBSi)系微晶玻璃.CaO部分替代BaO的掺杂方法制备BaBSi系微晶玻璃,研究CaO掺杂对微晶玻璃性能的影响.通过SEM、XRD和DSC对微晶玻璃材料的热、力和电学性能的分析表明:随着CaO掺杂含量的增加,微晶玻璃中方石英晶相含量显著减少,而石英晶相含量明显增加;随着CaO掺杂含量的增加,微晶玻璃的抗弯强度呈现减小的变化趋势,微晶玻璃的热膨胀系数也在一定范围内变小,同时微晶玻璃的热膨胀系数随温度的变化更趋于线性化,更加优化了微晶玻璃的热学性能.在950℃的烧结温度条件下,CaO掺杂量为8%(质量分数)时制备的微晶玻璃具有良好的综合性能,高热膨胀系数(12.51×10-6/℃),高抗弯强度(170 MPa),低介电常数(6.2)及低介电损耗(0.06%).  相似文献   

7.
司敏杰  郭卫  田芳  张飞龙  李兵  马小营 《玻璃》2021,48(2):13-17
超薄盖板玻璃经二步法离子强化后具有高强度及优良的抗冲击性能,广泛应用于智能手机、平板电脑等触摸屏领域.阐述了二步法离子强化工艺的研究进展,对超薄盖板玻璃二步法离子强化的影响因素:玻璃组分、熔盐成分及交换时间和温度进行了分析,展望了超薄盖板玻璃二步法离子强化工艺发展趋势.  相似文献   

8.
采用高温熔融法制备了Eu3+掺杂Y2O3-Al2O3-SiO2荧光玻璃,探讨了成分对该体系玻璃形成能力的影响,并对不同Eu3+掺杂浓度下的荧光性能进行了研究.结果表明,熔融温度为1500℃条件下,SiO2含量对该体系的玻璃形成能力影响明显,Y/Al摩尔比为3/5时,SiO2含量在52%—68%(摩尔分数)范围内时可以获得玻璃.掺杂Eu3+的Y2O3-Al2O3-SiO2玻璃具有荧光性能,在395nm波长激发下,在588 nm和614 nm处出现明显的发射峰.随着Eu3+掺杂浓度的增加,该荧光玻璃的发射波长不变,但发射强度有所变化;当Eu3+掺杂浓度为1.5%(摩尔分数)时,特征发射峰强度最大.  相似文献   

9.
采用熔融-晶化法制备了Tb3+掺杂的CaMoO4为主晶相的透明钼酸盐玻璃陶瓷。利用DSC、XRD、SEM确定了该体系玻璃样品的最佳热处理制度:715℃保温2.5 h;随着热处理时间的增加,玻璃陶瓷中的晶粒尺寸逐渐变大;利用UV-Vis-NIR得到样品玻璃陶瓷在可见光区的透过率可达80%;并利用荧光光谱讨论了在相同热处理条件下,不同Tb3+掺杂浓度对玻璃陶瓷样品发光性能的影响,研究表明Tb3+掺杂浓度为7.0mol%时样品的荧光强度最大。  相似文献   

10.
低温共烧陶瓷(LTCC)的玻璃材料对基板性能有重要影响.本文介绍了LTCC用玻璃材料的体系分类与性能特点,梳理了组分、工艺等对材料性能的影响规律,对现有较成熟体系进行了重点分析.CaO–B2O3–SiO2微晶玻璃体系基板含大量晶相,介电性能优异,但烧结析晶行为敏感,组分和工艺波动对性能影响较大.PbO–B2O3–SiO...  相似文献   

11.
化学强化技术亦称离子交换技术,因可在玻璃表面形成压缩压应力层改善玻璃的机械强度而被广泛应用于建筑、交通等领域。化学强化工艺参数的变化直接影响着化学强化后玻璃的性能。本文综述了离子交换反应原理、玻璃组成、化学强化温度、化学强化时间及熔盐组成对化学强化过程的影响,并简要介绍了电场辅助化学强化工艺与无熔盐化学强化工艺的优点与不足。总结国内外化学强化技术的研究进展,提出玻璃现有化学强化技术的不足,为玻璃化学强化技术的科学研究与发展提供参考。  相似文献   

12.
与传统的钠钙硅玻璃和高铝玻璃相比,锂铝硅玻璃具有网络结构致密、弹性模量较高和适宜两步法化学钢化等特点,被视为第三代高强玻璃基板,可用作电子信息产品盖板、航空透明器件以及舰船、特种车辆的观察窗口等。目前,锂铝硅玻璃的研究主要涉及:(1)探究锂铝硅玻璃的“组成-结构-性能”本构关系,为设计优化高性能锂铝硅玻璃提供理论指导和性能预测;(2)改进现有溢流和浮法成型方法和装备,满足大尺寸、多厚度和高尺寸精度锂铝硅玻璃成型需要;(3)研究锂铝硅玻璃的两步法化学增强方法,解决表面压应力和应力层深度同步提升难题,显著提高玻璃强度、硬度和抗跌落性能。本文基于上述三个方面综述了锂铝硅玻璃的国内外研究进展。  相似文献   

13.
陈福 《玻璃》2019,(6):10-14
玻璃的理论强度很高,但由于原料组成、熔化、成形和退火等各工艺过程的影响,玻璃的实际强度比理论值要低很多。采用表面化学增强技术,能够降低玻璃的表面缺陷,提升玻璃的力学强度、表面硬度、耐划伤等性能。玻璃表面化学增强技术有离子交换法、表面化学抛光、脱碱增强法、表面涂层增强、表面微晶化增强技术等方法,通过对上述方法的研究和对比分析,每种方法都有各自相应的特点和应用范围,这些方法拓宽了玻璃表面化学增强技术的研究和发展。  相似文献   

14.
赵国华  马婧  田纯祥 《玻璃》2009,36(4):31-34
了解在化学钢化过程中影响玻璃强度的因素对提高化学钢化玻璃的性能非常重要。文章叙述了玻璃组成、盐浴成分、处理时间、处理温度对化学钢化玻璃强度的影响。  相似文献   

15.
The effects of various methods of mechanical strengthening of glass on the adhesion properties of poly(vinyl butyral) (PVB) film to a float glass surface were investigated. The mechanisms of the influence of the strengthening processes on the adhesion properties were analyzed. The influence of different types of pretreatment of the glass surface on the adhesion of the polymer films was also considered. It was shown that ion-exchange strengthening followed by treatment with an alkaline water solution provided the best combination of high mechanical strength of glass and good adhesion of the PVB films to the glass surface. Metal-oxide coatings on float glass increased the mechanical strength of glass but decreased the adhesion strength between the polymer and glass. The adhesion of PVB to the metal-oxide layers was determined not only by the chemical composition of the layers, but also by the method of layers formation, the type of glass surface pretreatment, and the nature of the intermediate layer between the metal-oxide layer and the glass surface.  相似文献   

16.
化学强化是一种玻璃机械强度增强方法,适用于异型、超薄、高碱、高膨胀玻璃增强,因新型超薄显示产品的屏幕保护玻璃发展需要,化学强化技术重新在碱铝硅酸盐玻璃品种掀起研究热潮。本文对化学强化本质及铝硅酸盐玻璃在屏幕保护玻璃应用进行了回顾,基于玻璃化学强化的高CS、DOL和低CT诉求,归纳总结了关键影响因素,第1,碱铝硅酸盐玻璃的成分及结构是基础,氧化铝有利玻璃网络孔隙增大创造交换通道,氧化钠或氧化锂是离子交换关键物质;第2,对于玻璃组成和结构设计,要求玻璃网络键合度R=O/Si或O/(Si+Al)满足2.15~2.40,碱金属氧化物质量分数大于13%且膨胀系数大于6×10^-6/℃;第3,在化学强化工艺方面,化学强化温度决定离子扩散系数,化学强化时间决定DOL,一步法仅能获得相对较大的CS,而DOL不很理想,只有两种离子参与交换的二步法才有利于CS和DOL同步提高。  相似文献   

17.
超薄高强屏幕保护玻璃是触控显示产品的重要保护材料,也是当前较为热门的玻璃品种。超薄屏幕保护玻璃经过多年技术开发和产品迭代更新,已经发展成具有不同组分特点的碱铝硅酸盐系列产品。本文梳理了国内外屏幕保护玻璃产品发展及其迭代历程,总结了不同类型的碱铝硅玻璃产品化学组成特点,分析了不同产品对应的化学强化工艺技术,重点论述了国内外屏幕保护材料用高强透明微晶玻璃的研究现状,同时展望了微晶玻璃未来发展方向,为今后屏幕保护玻璃研发提供借鉴与参考。  相似文献   

18.
搪玻璃是一种在金属表面喷涂瓷釉(搪玻璃釉),经高温搪烧密着而成的复合材料,既具有玻璃的化学稳定性,又具有金属材料的硬度大、强度高等优良特性,同时表面光滑易清洗,因此在化工、医药等行业广泛应用。搪玻璃性能取决于搪玻璃釉的成分,搪玻璃釉包括基体剂、乳浊剂、助熔剂、密着剂等,其中助熔剂中含有低熔点物质,能够降低熔化温度,破坏搪玻璃釉连续的网络结构,形成新分子键,进而改良搪烧工艺;密着剂能够与金属基体发生化学反应,增强搪玻璃釉和金属基体的结合强度,进而提高力学性能。本文简要介绍了搪玻璃釉中的各类助剂,着重叙述了助熔剂和密着剂的组成及作用机理,为今后设计搪玻璃釉及提高搪玻璃设备性能提供了参考依据。  相似文献   

19.
刚玉基复相陶瓷材料具有高硬度、高强度及耐磨性等优异的力学性能,是结构陶瓷领域研究的热点之一,具有广阔的应用前景.以α-Al2O3、SiC和ZrO2为原料,掺杂少量稀土氧化物La2O3,采用无压埋烧工艺,制备了稀土掺杂刚玉基复相陶瓷.通过XRD、SEM等手段研究La2O3添加量对复相陶瓷微观结构和性能的影响.结果表明:掺杂La2O3可将复相陶瓷的烧结温度降低至1540℃,经1540℃烧结的掺杂复相陶瓷强度和硬度分别为183 MPa和18.46 GPa.La2O3位于晶界处抑制晶粒长大,促进晶粒细化,利于样品的致密化,同时其晶界强化作用有利于复相陶瓷强度的提高.  相似文献   

20.
采用氢氟酸基溶液对玻璃进行腐蚀,研究酸腐蚀对玻璃强度的影响。对新鲜玻璃表面施加有机涂层,研究了玻璃表面的微观结构及力学性能。结果表明,酸腐蚀可以提高玻璃的强度,处理10 min后强度达到最大,但是强度稳定性差,表面易受损伤,在酸处理后的表面施加有机涂层可以极大提高玻璃的强度。其增强机制是,涂层填充了玻璃裂纹空隙,起到治愈损伤的效果,同时泊松抑制效应也对玻璃强度的增加起了作用。与物理钢化及化学钢化相比,这种综合增强方法明显提高了玻璃的力学性能,同时降低了成本。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号