共查询到19条相似文献,搜索用时 46 毫秒
1.
IMF分量的倒频谱分析在滚动轴承故障诊断中的应用 总被引:1,自引:0,他引:1
轴承局部损伤故障引起的振动响应往往会被较大的振动信号所掩盖,影响故障的正确诊断。本文提出IMF分量的倒频谱分析方法,首先将复杂的信号分解为有限的内禀模态函数(IMF)之和,对原始振动信号进行降维;再对IMF分量进行倒频谱分析,利用倒频谱方法准确地提取振动信号幅值谱上的周期特征。对EMD分解得到的多个IMF分量同时做倒频谱分析,可以相互验证,从而得到更可靠、更准确、更可信的诊断结果。通过对IMF分量的倒频谱分析法和Hilbert包络谱分析法诊断效果进行比较,结果表明,IMF分量的倒频谱分析方法比Hilbert包络谱分析提取的故障频率特征更精准、可靠。 相似文献
2.
3.
针对滚动轴承的振动信号因非线性、非平稳且信噪比低而造成故障特征难以提取的问题,基于辛几何模态分解(Symplectic Geometry Mode Decomposition, SGMD)和多点最优最小熵解卷积调整(Multipoint Optimal Minimum Entropy Deconvolution Adjusted, MOMEDA)理论,提出了SGMD-MOMEDA故障提取方法。首先,使用SGMD对故障信号进行分解,得到一列的辛几何分量(Symplectic Geometry Components, SGC);其次,依据相关性准则选取SGC进行信号重构,并确定MOMEDA分解参数;最后,使用MOMEDA方法对重构信号进行处理以提高信噪比,并利用包络谱分析对处理后的信号提取故障特征。仿真和实验结果表明,该方法能够准确地提取滚动轴承的故障频率,且与经验模态分解(Empirical Mode Decomposition, EMD)方法的对比结果显示了SGMD方法作为预处理其分解结果更加准确,在故障诊断领域具有较大的应用价值。 相似文献
4.
《机械强度》2013,(5):559-565
独立分量分析(independent component analysis,ICA)可以实现混合信号的按源分离,但由于其使用时通常需要预先知道信号源数量,使其应用受到限制。在ICA基础上发展起来的约束独立分量分析(constrained independent component analysis,cICA)方法,可根据一定的先验知识生成参考信号,以提取感兴趣的独立分量(independent component,IC)。包络提取技术可有效隔离解调共振带之外的干扰源信号,同时起到对信号的振源降维作用。谱峭度包络提取是近年来发展起来的崭新包络提取方法,可实现对信号包络的自适应提取。将谱峭度包络提取方法与cICA相结合,提出一种高鲁棒性的滚动轴承故障特征提取法,首先通过谱峭度实现对信号包络的自适应提取,再根据滚动轴承故障特征频率建立参考信号,以cICA实现对滚动轴承不同故障对应包络IC的有效提取。仿真和测试试验表明,该方法可实现在干扰条件下对滚动轴承故障特征信息的有效提取。 相似文献
5.
6.
针对平方包络信号的负熵对随机脉冲敏感以及平方包络谱的负熵易受离散谐波干扰,从而导致信息图法对随机脉冲和离散谐波分析时鲁棒性差的问题,引入信噪比测度作为轴承故障信息的评估指标,识别包含丰富故障信息的共振频带,并进一步提出基于SNRgram的包络分析方法提取滚动轴承故障特征。仿真和试验结果表明,相对于信息图和其他典型频带识别方法,SNRgram方法处理随机脉冲和离散谐波时具有更强的鲁棒性以及更高的频带识别准确性,能够有效识别轴承故障相关共振频带并提取轴承故障脉冲特征。 相似文献
7.
局部均值分解(LMD)是一种自适应时频分析方法,并在轴承的故障诊断中成功应用,但是受噪声的影响比较大。为了最大程度地降低噪声的干扰,提出了主分量分析(PCA)与局部均值分解(LMD)相结合的故障诊断方法。该方法首先利用相空间重构将一维时间序列振动信号嵌入为等效的多维时间序列信号,然后利用主分量分析提取主要成分实现降噪,最后把降噪之后的信号进行LMD分解,分解成若干个乘积函数(PF)之和,对能量最高的PF1进行包络谱分析,提取出故障特征信息。通过仿真试验和轴承故障试验,结果表明该方法能够有效地提取出信号的故障特征,证明了该方法的有效性。 相似文献
8.
基于最优小波基的电机故障信号特征提取研究 总被引:2,自引:0,他引:2
小波变换去噪中最关键的问题是最优小波基的选取,使其能够将噪声从原始信号中分离出来。针对电机故障的特点,提出了一种基于信号的最优小波基选取方法。将信号小波变换的能量阈值曲线作为小波基函数的适用性评价指标。通过训练神经网络,选取适合该信号的最优小波基,最后采用平移不变量(TI)小波阈值法实现信号去噪。在此基础上对750W化纤电机进行了测试,实验结果表明,该方法能准确找出适合特定信号的最优小波基。训练后的神经网络可直接用于其它类型电机的信号去噪处理,具有实用价值。 相似文献
9.
在故障特征提取方面,传统的典型特征提取方法往往需要深入理解信号特性、结合工程实践经验提取故障特征,从而极大程度上孤立了特征提取和智能诊断两个环节,导致在针对复杂多变的机械设备海量信号时,提取反映信号特性的典型特征往往效果不理想。针对该问题,提出一种基于IMF重构-SLLE的新的特征提取方法,该方法首先把EEMD分解得到的IMF分量重构成高维向量,并利用SLLE优良的非线性维数约简能力对信号进行降维。实验表明:IMF重构-SLLE特征提取方法优于传统的EEMD典型特征提取方法,并把此方法应用到高速列车转向架故障状态识别中,识别率高达97.78%,具有重要的工程应用价值。 相似文献
10.
11.
基于LMD-MS的滚动轴承微弱故障提取方法 总被引:1,自引:0,他引:1
轴承的早期故障信号属于微弱信号,其故障特征提取一直是旋转机械故障诊断的一大难点。笔者将掩膜法引入到局部均值分解(local mean decomposition,简称LMD)分解中,提出了一种基于LMD和掩膜法(mask signal,简称MS)的滚动轴承微弱故障提取方法。由于LMD在噪声背景下分解出的功能分量(product function,简称PF)存在模态混叠现象,很难辨别故障频率的真伪,所以引入了掩膜信号法对LMD分解出的与原信号相关性强的PF分量进行处理,抑制模态混叠现象,提取故障频率。文中以滚动轴承实际故障信号为对象进行分析,通过将掩膜信号法与LMD方法相结合的方式,对存在噪声的故障信号进行处理,将故障频率处的峭度值提高了8倍,同时将信噪比提高了19.1%,成功提取了故障信号,为故障特征提取提供一种新的诊断方法。 相似文献
12.
为实时监测砂带磨损状态,采用基于磨削声信号与电流信号的监测方案。首先,利用时域分析方法与小波包分析方法提取砂带磨损信号特征,通过朴素贝叶斯方法融合两种信号,从而识别砂带磨损状态;其次,为提高砂带磨损状态识别准确率,针对朴素贝叶斯方法的分类特性,改进了一种基于Fisher判别率与互信息的信号特征选择方法。实验结果表明,利用基于Fisher判别率与互信息方法能够挑选出可分性好同时特征间相关性弱的信号特征,基于朴素贝叶斯的砂带磨损状态识别方法能够准确地识别砂带磨损状态。 相似文献
13.
S变换用于滚动轴承故障信号冲击特征提取 总被引:2,自引:0,他引:2
为从低信噪比的滚动轴承故障信号中提取出冲击特征,以便于进行轴承故障诊断,引入S变换的信号处理方法。以短时傅里叶变换(short time Fourier transform,简称STFT)以及连续小波变换(continuous wavelet transform,简称CWT)为理论基础,分别推导得出了连续S变换的定义式,并利用快速傅里叶变换(fast Fourier transform,简称FFT)实现S变换离散化计算。S变换克服了STFT时频分辨率固定的缺点,弥补了CWT缺乏相位信息的不足。仿真信号研究表明,S变换在信号整个频带上具有良好的时频分辨率和时频聚集性,能够提取低信噪比信号中的冲击特征,且性能优于STFT和CWT。最后对一组实际的滚动球轴承故障振动信号进行S变换处理,结果表明,S变换能够方便有效地从中提取出周期性的冲击特征,从而指导滚动轴承相关故障的诊断。 相似文献
14.
15.
16.
结合传统阶比分析和峭度图算法的优势,利用计算阶比跟踪方法将时域非平稳信号转换为角域平稳信号,并利用峭度指标准确表征滚动轴承振动信号中的故障瞬态冲击大小,提出了阶比峭度图算法。仿真故障信号及实测滚动轴承外圈故障信号分析结果表明,阶比峭度图算法能够有效识别阶比域内的最优包络解调频带参数,显著提高了变转速工况下滚动轴承故障特征提取的准确性。 相似文献
17.
18.
针对滚动轴承早期故障信号十分微弱的问题,提出采用Duffing混沌振子对故障微弱信号进行检测的方法。对Duffing方程进行改进,实现对任意频率微弱信号的检测。分析微弱周期信号相位角对检测系统的影响,提出采用多相位混沌振子阵列来消除微弱周期信号相位角对检测系统的影响。通过仿真实验,确定检测系统由3个混沌振子构成。使用该检测系统成功检测出轴承外圈故障微弱信号,相比传统的混沌振子检测系统,缩小了检测盲区,提高了检测信噪比。 相似文献