首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
本文研究高铝超薄浮法玻璃与浮法钠钙硅玻璃的化学钢化过程.用全自动化学钢化玻璃表面应力测试仪、万能试验机和数显显微维氏硬度计分别测试了样品的表面应力、应力层深度、抗折强度和显微硬度.结果表明:在一定的温度下,随着离子交换时间的增加,高铝超薄玻璃与浮法钠钙硅玻璃的表面应力、抗折强度、显微硬度均出现先增加再到减小的趋势,应力层深度则随着时间的增加而加深.在同样的离子交换制度下,高铝玻璃化学钢化后的力学性能优于钠钙硅玻璃.同时,以浮法工艺生产的玻璃锡面的表面应力小于非锡面的应力,应力层深度也相对小于非锡面的深度.  相似文献   

2.
研究超薄高铝硅酸盐玻璃经过两次钾钠混合熔盐的离子交换强化处理后表面压应力、显微维氏硬度、抗冲击强度以及离子交换深度的变化情况。实验结果表明,通过二次交换强化处理后,玻璃的表面压应力由83.4 MPa提升到925.3 MPa,显微维氏硬度由657.5提升到875.1,落球测试高度由18.3 cm提升到45.7 cm, K+的扩散深度也由一步离子交换的27μm提升到二步离子交换的44μm。  相似文献   

3.
与传统的钠钙硅玻璃和高铝玻璃相比,锂铝硅玻璃具有网络结构致密、弹性模量较高和适宜两步法化学钢化等特点,被视为第三代高强玻璃基板,可用作电子信息产品盖板、航空透明器件以及舰船、特种车辆的观察窗口等。目前,锂铝硅玻璃的研究主要涉及:(1)探究锂铝硅玻璃的“组成-结构-性能”本构关系,为设计优化高性能锂铝硅玻璃提供理论指导和性能预测;(2)改进现有溢流和浮法成型方法和装备,满足大尺寸、多厚度和高尺寸精度锂铝硅玻璃成型需要;(3)研究锂铝硅玻璃的两步法化学增强方法,解决表面压应力和应力层深度同步提升难题,显著提高玻璃强度、硬度和抗跌落性能。本文基于上述三个方面综述了锂铝硅玻璃的国内外研究进展。  相似文献   

4.
具有高弯曲强度的柔性玻璃是柔性电子显示的重要组成部分,但柔性玻璃本质是脆性材料,因此其力学性能仍然不能满足使用要求。化学强化是提高柔性玻璃弯曲半径、抗划伤性等力学性能的有效途径,本文采用一步化学强化法,将90μm超薄高铝柔性玻璃在纯硝酸钾熔盐中进行强化,研究离子交换工艺对样品表面应力、维氏硬度及弯曲半径的影响规律。结果表明:在380℃进行1 h的离子交换后,样品的表面压应力达834.1 MPa,应力层深度为15.91μm,此时玻璃具有最佳的弯曲性能和耐划伤性;经化学强化后,90μm柔性玻璃的最小弯曲半径可由(29.8±0.73) mm降低至(6.94±0.99) mm;随着继续升高交换温度和延长时间,柔性玻璃的力学性能会有所降低。  相似文献   

5.
新一代锂铝硅玻璃逐渐成为航空透明件的主流结构材料,由于其较高的弹性模量和优异的离子交换能力,经过化学增强处理后具有优异的力学性能,能够很好地满足航空透明件轻质、高强的需求。研究了1.8 mm厚度锂铝硅玻璃经过化学增强后的抗冲击性能变化,采用不同增强工艺制备了多组样品进行落球冲击测试,并依据应力包线进行了初步理论计算,探讨了玻璃中心张应力对抗冲击性能的影响。研究结果表明,1.8 mm厚度锂铝硅玻璃表面压应力为930 MPa左右时,应力层深度在130~160μm范围内抗冲击性能较佳,玻璃具备较好的力学性能。  相似文献   

6.
离子交换法制备钠铝硅系化学钢化玻璃,分析测试玻璃表面K+和Na+的分布情况、玻璃的表面应力及应力层深度、弯曲强度、Weibull模量和显微硬度,研究离子交换温度对化学钢化玻璃在结构和性能上的影响.结果表明:经过离子交换后,玻璃的表面应力、弯曲强度、Weibull模量和显微硬度均显著提高.提高离子交换温度,玻璃表面应力、弯曲强度和显微硬度逐渐下降,应力层深度逐渐加厚.温度350℃时,玻璃表面离子交换层具有全K+层、K+-Na+层和富K+层三层结构.温度升高,全K+层消失和富K+层,K+-Na+层加厚并出现贫Na+层.温度410℃时玻璃的强度分散性最小,可靠性最高.  相似文献   

7.
应力层深度是衡量化学强化玻璃抵抗裂纹扩展能力的重要指标,提高应力层深度对于改善化学强化玻璃的使用性能具有重要的意义.以国产高铝玻璃为研究对象,研究了化学强化与热处理对玻璃应力层深度、表面压应力和抗弯强度的影响.研究表明,对化学强化玻璃的热处理可以显著增加玻璃的应力层深度,但是抗弯强度也会明显降低;对热处理后的玻璃的二次化学强化,可进一步增加玻璃的应力层深度,并显著提升玻璃表面压应力与抗弯强度.该方法在不延长工艺时间的前提下,可显著增加玻璃的应力层深度,并避免高温或长时间化学强化所引起的力学性能降低.  相似文献   

8.
以碱铝硅玻璃为研究对象,采用多次离子交换(凯丽法),研究离子迁移与离子交换对玻璃强度的影响。结果表明:凯丽法在单次离子交换法基础上引入高温离子迁移(HTIM)工艺,易实现更深的离子交换层深度(DOL),DOL值增加140%,且具有特殊的应力分布层,抗冲击强度较传统一步法提高1倍,避免了传统离子交换法玻璃自爆的安全性风险。  相似文献   

9.
李振  李西川  余涛  梁晓峰 《玻璃》2015,42(2):26-30
为了研究玻璃化学钢化的工艺和机理,采用低温型离子交换法对普通钠钙硅浮法玻璃进行了化学增强试验。利用X射线荧光光谱仪(XRF)测试了玻璃的表面成分,用维氏硬度仪测量了玻璃样品的维氏硬度。结果表明,钾离子与钠离子交换导致玻璃硬度显著增加,化学增强效果与反应温度及时间密切相关,随着温度升高与时间延长,钾离子浓度分数增加,钠离子浓度分数减小,离子交换对玻璃的增强效果在450℃和12 h出现极值。  相似文献   

10.
阐述了手机玻璃面板对化学钢化后玻璃性质的要求,如表面压应力、应力层深度、硬度等指标,还指出高铝高镁玻璃成分比较适合化学钢化,同时还探讨了二步和三步离子交換法在手机玻璃上的应用。  相似文献   

11.
《Ceramics International》2023,49(19):31351-31363
In this work, the aluminosilicate glass was subjected to ion-exchange using the KNO3-AgCl mixed molten salt in order to strengthen the glass while imparting antimicrobial properties. The concentration distribution of K+ ions and Ag+ ions of the ion-exchanged glasses was characterized by EDS, the effects of ion-exchange temperature (460-500 °C), ion-exchange time (0.5-3 h) and AgCl concentration (0–2.5 wt%) in the mixed molten salt on the strengthening effect and properties of the glass were investigated. The results showed that Ag+-Na+ ion-exchange, K+-Na+ ion-exchange existed simultaneously, and Ag+-Na+ ion-exchange occurred preferentially. Due to the presence of metallic silver, the appearance of the Ag+ ion-exchanged glass was light yellow and its transmittance showed a decrease. The surface compressive stress trended up and then down with increasing temperature and time because of the stress relaxation effect. The Vickers hardness of ion-exchanged glass increased by 15%, and the densities and chemical stability were also increased. Ions leaching experiments showed that the Ag+ ions release concentration of silver-loaded glass in aqueous environment can reach the bactericidal level. It has been shown that ion-exchange of glass in KNO3-AgCl mixed molten salts allowed the glass to be strengthened and incorporated with antimicrobial active ions, its chemical stability was improved, too.  相似文献   

12.
将离子交换高碱铝硅酸盐玻璃在340~460℃热处理1 h,研究热处理对离子交换玻璃性能的影响。测试了热处理后玻璃的表面应力、应力层深度、强度和硬度。结果表明:随着热处理温度的升高,玻璃的表面应力及强度明显下降,应力层深度有所增加,而硬度略微下降。  相似文献   

13.
通过对玻璃进行了离子交换实验,研究P2O5含量变化对铝硅酸盐玻璃离子交换性能的影响.利用显微硬度仪、表面应力仪、微区X射线荧光光谱仪和场发射扫描电子显微镜线扫分别表征了离子交换玻璃的硬度、表面应力、元素含量变化和离子交换深度等性能.结果表明:离子交换后玻璃表面的K+含量明显增加,Na+含量降低,玻璃表面发生了明显的离子交换.此外,随着P2O5含量的增加,离子交换后的玻璃的硬度、表面应力和离子交换层深度逐渐增加.实验结果证明P2O5的引入能有效促进铝硅酸盐玻璃离子交换.  相似文献   

14.
Crystallization of glass has significant effects on glass structure and the resultant ion-exchange behaviors. In this work, transparent glass-ceramics (GCs) with sequential crystallization of ZnAl2O4 and β-quartz solid solution nanocrystals (NCs) were prepared, and effects of the crystallization on microstructure and ion-exchange properties were investigated. Compared with the specimen with simultaneous precipitation of ZnAl2O4 and β-quartz solid solution NCs, GCs with sequential crystallization of ZnAl2O4 and β-quartz solid solution NCs show smaller grain size and more uniform structure and higher transparency. Ion-exchange depth of layer (DOL) increases significantly with the crystallization of the specimens due to the reduction in content of zinc and five coordinated aluminum in the residual glass matrix. High residual compressive stress and Vickers hardness can be obtained after ion-exchange in KNO3 molten salt.  相似文献   

15.
熔盐中少量的Na+并不会对玻璃的离子交换效果产生明显影响,但当熔盐中Na+浓度不断增大时,化学增强钠铝硅酸盐玻璃的性能开始受到影响。本文采用一步法离子交换工艺研究了熔盐中Na+浓度对不同厚度化学增强钠铝硅酸盐玻璃表面压应力、应力层深度和弯曲强度等性能的影响。研究表明:熔盐中Na+浓度不断增大时,化学增强钠铝硅酸盐玻璃的表面压应力、弯曲强度下降;弯曲强度下降最多可达175 MPa,此时玻璃的表面压应力下降了57.4 MPa;熔盐中Na+浓度变化未对化学增强钠铝硅酸盐玻璃的应力层深度和可见光透过率产生明显影响。  相似文献   

16.
评述了玻璃脆性的特征。维氏硬度和断裂韧性的比例可方便地确定玻璃脆性,并计算了不同成分玻璃的脆性。石英玻璃的脆性最大,氧化物玻璃次之,金属玻璃最小。而在氧化物玻璃中,微晶玻璃脆性最小,铝硅酸盐玻璃次之,钠钙玻璃又次之。  相似文献   

17.
A two-step ion-exchange process that introduces strengthening and multiple cracking into glasses has been developed. The experimental parameters in the second step must be carefully controlled to avoid spontaneous cracking, because the compressive stress is reduced in the surface region. Control of the near-surface stress gradient is an important role of the second ion-exchange step. Double ion exchange leads to strength values as high as those that are obtained after the first ion-exchange step but remarkably produces multiple cracking on the specimen surface on loading. The multiple cracking, which acts as a failure warning, is initiated at 300 MPa, and the crack spacing decreases as the applied stress increases. The multiple cracking is shown to be a result of the crack stability that is induced by the designed residual-stress profiles. This behavior has been confirmed, using the measured residual stresses to calculate the apparent-toughness curves for surface cracks. The duration of the first ion-exchange step has been shown to be important in determining the degree of strengthening; however, the duration of the second step controls the extent of the crack stability.  相似文献   

18.
Transparent glass-ceramics have particular properties compared with their precursor glasses, and have promising potential applications in many fields. Titanium-relative phases are frequently employed as nucleation agents for crystallization of glass-ceramics, and rarely been precipitated as functional nanocrystalline phases in glass-ceramics. In this work, transparent glass-ceramics containing Zn2TiO4 and/or α-Zn2SiO4 nanocrystals are investigated. It turns out that Vickers hardness of these glass-ceramics increases with the precipitation of Zn2TiO4 and α-Zn2SiO4 nanocrystals. Despite the blocking effect of nanocrystals precipitated in the glass-ceramics, structural and compositional modification of the residual glass induced by the precipitation of these nanocrystalline phases facilitates the K-Na ion-exchange, leading to the enhanced depth of layer and further improved Vickers hardness of the glass-ceramics.  相似文献   

19.
夏文宝  姜宏  鲁鹏 《玻璃与搪瓷》2014,(1):37-42,32
随着现代科技的迅猛发展,触摸屏已经是许多电子显示产品的首选。电容式触摸屏则成为全球主流的触摸屏技术,电容式触摸屏最外层的盖板玻璃是触摸屏的关键材料之一。这种玻璃要具备高强度、高硬度和高光洁度等特点,具有耐压、耐摔、耐划伤和抗冲击等性能。高铝硅玻璃可以作为此种触摸屏盖板玻璃材料,因而具有巨大的市场。对高铝硅触摸屏盖板玻璃的现状及我国现在的实际情况进行了分析,列出了一系列的实际问题,并指出了高铝硅玻璃的发展方向和应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号