共查询到19条相似文献,搜索用时 62 毫秒
1.
针对YOLOv3算法在监控视频行人检测中对遮挡目标漏检率较高的问题,文中提出改进YOLOv3网络结构的遮挡行人检测算法.首先在网络全连接层引入空间金字塔池化网络,增强网络的多尺度特征融合能力.然后采用网络剪枝的方式,精简网络冗余结构,避免网络层数加深导致的退化和过拟合问题,同时减少参数量.在走廊行人数据集上进行多尺度训练,获得最优的权重模型.实验表明,文中方法在平均准确率和检测速度上都有所提升. 相似文献
2.
由于足球比赛场景中密集人群、移动小目标居多, YOLOv3算法存在检测精确度较低且模型参数量较大等问题, 使其无法部署在资源算力有限的移动设备上, 本文提出了一种基于改进YOLOv3的行人检测方法, 将Darknet-53主干特征提取网络替换为更加高效且轻量化的GhostNet网络; 同时选取了4个尺度的检测分支层并采用K-means++算法改善anchor box的聚类效果; 添加空间金字塔池化对输入图像实现相同大小的输出; 提出CIoU损失函数来计算目标定位损失值; 添加heatmap热力图可视化并在训练中使用Mosaic数据增强. 实验结果表明, YOLOv3-GhostNet在VOC融合数据集上mAP达到90.97%的同时相比YOLOv3算法提高了1.75%, 参数量减少了约81.4%且实时检测速率提高了约1.5倍, 在小型移动设备上表现出不错的检测效果. 相似文献
3.
城市道路上车辆行人的检测是自动驾驶汽车环境感知功能中的核心要素之一。针对现有城市道路车辆行人检测任务在使用目标检测算法检测精度低,检测位置不准确等问题,提出一种基于改进YOLOv5的城市道路车辆行人检测新算法—HCA-YOLOv5目标检测算法。通过K-means++聚类算法重新设计并更新锚框初始值并将其匹配到对应特征层,以提高模型对检测目标的检测性能;通过利用城市道路图像中不同高度上的类别分部特点并结合Transformer结构改进HANet的注意力结构,提高I模型I对输入图像的全局上下文特征提取能力,加强网络.对城市道路场景图片中不同类别的辨别.能力。实验结果表明,在自动驾驶数据集KTT上,所改进算法的均值平均精度(mAP)达到了9193%,相比原YOLOv5算法mAP提高了292个百分点,满足了城市道路场景下车辆形容的准确率要求。 相似文献
4.
针对自动驾驶场景下行人检测任务中对中、小尺寸目标和被遮挡目标的检测需求,以及现有深度学习模型的不足,提出基于ResNet34_D的改进YOLOv3模型:通过改进残差网络的卷积块结构提出ResNet34_D,并作为YOLOv3的主干网络以降低模型尺寸和训练难度;在ResNet34_D的3个尺度卷积特征图之后,增加SPP层和DropBlock模块以提高模型的泛化能力;基于K-means聚类算法确定自适应的多尺度锚框尺寸,提高对大、中、小3种尺寸行人目标的检测能力;引入DIoU损失函数,提高对被遮挡目标的识别能力.所提出模型的消融实验验证了各个改进部分在提高模型检测准确率上的有效性.实验结果表明,所提出的基于ResNet34_D的改进YOLOv3模型具有较好的准确率和实时性,在BDD100K-Person数据集上的AP50达到69.8%,检测速度达到130 FPS.由所提出方法与现有目标检测方法的对比实验可知,所提出方法对小目标和遮挡目标的误检率更低,速度更快,具有一定的实际应用价值. 相似文献
5.
6.
如何根据藏族服饰特色来进行有针对性的算法修改,使模型能够更好地识别藏族服饰,在这个方向国内仍然处于一片空白。通过对YOLOv3增加一个YOLO层来解决藏族服饰中小目标特征信息采集困难的问题,最终结果表明,改进后的模型相比于原版模型,其AP提升了3.07%,但改进后的模型召回率略微降低。 相似文献
7.
8.
基于改进YOLOv3的火灾检测与识别 总被引:1,自引:0,他引:1
现阶段火灾频发,需要自动进行火灾的检测与识别,虽然存在温度、烟雾传感器等火灾检测手段,但是检测实时性得不到保证.为了解决这一问题,提出了基于改进YOLOv3的火灾检测与识别的方法.首先构建一个多场景大规模火灾目标检测数据库,对火焰和烟雾区域进行类别和位置的标注,并针对YOLOv3小目标识别性能不足的问题进行了改进.结合深度网络的特征提取能力,将火灾检测与识别形式化为多分类识别和坐标回归问题,得到了不同场景下火焰和烟雾两种特征的检测识别模型.实验表明,本文提出的改进YOLOv3算法对不同拍摄角度、不同光照条件下的火焰和烟雾检测都能得到理想的效果,同时在检测速度上也满足了实时检测的需求. 相似文献
9.
针对传统车辆检测算法效率低、漏检率高、对小目标车辆检测效果不好等问题,提出一种改进的YOLOv3 车辆检测算法.使用K-means++对训练标签进行聚类,确定车辆检测的anchor box;将特征提取能力更强的EfficientNet作为特征网络,并采用4 个特征尺度融合深层的语义信息和浅层的位置信息,提升小尺度车辆的检测效率;引入CIoU和Focal loss函数,提高了网络收敛速度和检测精度.实验结果表明,在UA-DETRAC和自建的数据集上,所提算法的MAP、Recall和FPS分别达到90.9%、88.3%和30 帧每秒,提升了小目标车辆的检测精度. 相似文献
11.
论文提出一种基于改进的YOLOv3的战场敏感目标检测方法.考虑到战场中目标的敏感性,不仅要保证检测的实时性,还需要保证较低的漏检率.针对YOLOv3在敏感目标检测中存在的漏检率高、准确率低的缺陷,论文通过改进预选框生成算法、设置针对敏感目标的损失函数,得到最优检测模型.通过在sensitive-16k测试数据集进行测试,结果表明,改进后的YOLOv3敏感目标检测算法的mAP(mean Average Precision)达到了80.34%,召回率达到了89.68%,可以较好地解决战场中敏感目标的检测问题. 相似文献
12.
随着ETC通道车辆违规行为的不断增加,针对该场景下不同尺度和类型的车辆检测已经成为城市交通管理的一项重要工作.论文基于高速公路ETC场景下的真实数据集,提出了一种车辆检测的优化方法.为提高算法在车辆检测方面的适用性和准确性,论文在YOLOv3算法的基础上采用GIOU作为YOLOv3的边界框回归损失函数,同时用调整过的锚... 相似文献
13.
仪表检测是智能仪表测试不可或缺的环节,其效果直接决定仪表测试的准确率。针对仪表检测背景复杂且要求速度快的特点,提出一种基于改进YOLOv3的目标检测算法。基于YOLOv3算法,首先使用DenseNet(Densely Connected Convolutional Networks)替换Darknet中的最后2个网络块,以加强模型对特征的重用。然后采用轻量化的Darknet-46作为特征提取网络,并将DenseNet中的卷积神经网络修改为深度可分离卷积网络,再将所有检测层(YOLO Detection)之前的6层卷积修改为2层,以减少模型的参数。同时引入GDIOU(generalized-IOU and distance-IOU, GDIOU)边界框以回归坐标损失,并根据检测需求重新调整损失函数的权重。实验结果表明,相比原算法,改进的YOLOv3算法参数数量减少40%,在仪表检测中的精确率和召回率分别达到95.83%和94.98%,分别提高2.21个百分点和2.09个百分点,平均精度提高2.42个百分点,检测速度提高30.18%。 相似文献
14.
道路车辆实时检测是计算机视觉领域中的研究热点问题。针对道路车辆检测算法存在检测精度低、速度慢等问题,提出了一种基于改进YOLOv3的道路车辆目标检测方法。通过改进Darknet53骨架网络构建了有30个卷积层的卷积神经网络,在减少网络成本的同时提高了检测速度;根据道路车辆宽高比固定的特点,利用k-means聚类方法选取锚点预测边界框,提高了检测速度与精度。实验结果表明,提出的方法在标准数据集KITTI上的平均精度达到了90.08%,比传统的YOLOv3提高了0.47%,检测速度达到了76.04 f/s,明显优于传统的YOLOv3算法。同时将该方法应用于车辆行驶动态数据集,能够实现针对视频中道路车辆的实时检测。 相似文献
15.
针对木条表面死结和活结缺陷在检测过程中定位困难、平均识别精确度较低、检测速度较慢的问题,在分析木结缺陷特点和改进深度学习YOLOv3模型的基础上,研究其应用于改善木结缺陷检测时的精确度和速度.首先,对活结缺陷图像进行数据扩增,以解决类别不平衡问题.然后,改进k-means++算法,提升木结缺陷目标框的维度聚类效果,得到... 相似文献
16.
针对红外场景中行人、车辆等目标识别率低且存在复杂背景干扰的问题,提出一种基于Effi-YOLOv3模型的红外目标检测方法。将轻量高效的EfficientNet骨干网络与YOLOv3网络相结合,提升网络模型的运行速度。通过模拟人类视觉的感受野机制,引入改进的感受野模块,在几乎不增加计算量的情况下大幅增强网络有效感受野。基于可变形卷积和动态激活函数构建DBD和CBD结构,提升模型特征编码的灵活性,扩大模型容量。选择兼顾预测框与真值框中心点距离、重叠率和长宽比偏差的CIoU作为损失函数,更好地反映预测框与真值框的重叠程度,加快预测框回归速度。实验结果表明,该方法在FLIR数据集上的平均精度均值达到70.8%,Effi-YOLOv3模型参数量仅为YOLOv3模型的33.3%,对于红外场景中的目标检测效果更优。 相似文献
17.
在自动驾驶场景中,对前车尾灯的检测是一个广泛且具有研究意义的问题.Darknet53是YOLOv3的特征提取网络,其使用5个残差单元对原始图像进行特征提取并采用三尺度的特征图进行融合预测,尺寸越小对大目标的特征表达能力越强.因为尾灯检测属于小目标检测,所以本文舍去Darknet53的最后一个残差单元,同时增加小尺度特征... 相似文献
18.
对图像或视频数据中的车辆进行检测是城市交通监控中非常重要并且具有挑战性的任务。该任务的难度在于对复杂场景中相对较小的车辆进行精准地定位和分类。针对这些问题,提出了一个单阶段的深度神经网络(DF-YOLOv3),实现城市交通监控中不同类型车辆的实时检测。DF-YOLOv3对传统的YOLOv3算法进行改进,首先增强深度残差网络提取车辆特征,然后设计6个不同尺度的卷积特征图,并与残差网络中相应尺度的特征图进行融合,形成最终的特征金字塔执行车辆预测任务。在KITTI数据集上的实验表明,提出的DF-YOLOv3方法在精度和速度上均能获得较高的检测性能。具体地,对于512×512分辨率的输入模型,基于英伟达1080Ti GPU,DF-YOLOv3获得93.61%的mAP(均值平均精度),速度达到45.48 f/s(每秒传输帧数)。特别地,对于精度,DF-YOLOv3比Fast R-CNN、Faster R-CNN、DAVE、YOLO、SSD、YOLOv2、YOLOv3与SINet表现更好。 相似文献
19.
针对我国自动驾驶的辅助识别交通标志误差率大、检测速度慢、需人工参与等问题,提出一种基于改进YOLOv3的交通标志检测识别方法。通过改进Darknet53网络结构来减少网络迭代过程中前向推理计算,提升网络迭代速度。引入目标检测的直接评价指标GIoU指导定位任务来提高检测精度。使用[k]-means++聚类算法获取anchor尺寸并匹配到对应的特征层。实验结果表明,提出的方法相较于原始YOLOv3在标准数据集Lisa上的平均精度提升了8%,检测速度达到了76.9 f/s;在自制数据集CQ-data上平均精度可达94.8%,与传统识别以及其他算法相比,不仅具有更好的实时性、准确性,对各种环境变化具有更好的鲁棒性,而且可以识别多种交通标志的类型。 相似文献