首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
本文选用MgO-Al2O3作为复合添加剂,采用无压烧结,设计Si3N4-MgO-Al2O3系烧结体、Si3N4-SiC-MgO-Al2O3系烧结体,研究各种配方在不同忝型压力不同烧结条件下烧结体的性能,测定室温抗折强度、体积密度、体积变化和气孔率,通过X射线衍射分析鉴定烧结体的物相结构,从而确定了最佳工工艺范围。  相似文献   

2.
本文选用MgO—Al2O3作为复合添加剂,采用无压烧结,设计Si3N4一MgO—Al2O3系烧结体、Si3N4—SiC—MgO—Al2O3系烧结体,研究各种配方在不同成型压力不同烧结条件下烧结体的性能,测定室温抗折强度、体积密度、体积变化和气孔率。通过X射线衍射分析鉴定烧结体的物相结构,从而确定了最佳工艺范围。  相似文献   

3.
以α-Si3 N4为原料,Y2 O3和MgO为复合烧结助剂,通过无压烧结制备出氮化硅陶瓷。为了优化实验配方和工艺参数,采用正交实验研究了成型压力、保压时间、保温时间、烧结温度、烧结助剂含量以及配比对氮化硅陶瓷气孔率和抗弯强度的影响规律。结果表明,影响氮化硅陶瓷气孔率的主要因素是烧结助剂含量和配比,而影响其抗弯强度的主要因素是烧结助剂配比和烧结温度。经分析得出,最佳工艺参数为成型压力16 MPa,保压时间120 s,保温时间2 h,烧结温度1750℃,烧结助剂含量12wt%,烧结助剂配比1∶1;经最佳工艺烧结后的氮化硅陶瓷,相对密度为94.53%,气孔率为1.09%,抗弯强度为410.73 MPa。  相似文献   

4.
添加Mg-Al-Si体系烧结助剂的氮化硅陶瓷的无压烧结   总被引:9,自引:1,他引:8  
以MgO-Al2O3-SiO2体系作为烧结助剂,研究了氮化硅陶瓷的无压烧结。着重考察了烧结温度、保温时间以及烧结助剂用量等工艺因素对氮化硅陶瓷材料力学性能和显微结构的影响,通过工艺调整来设计材料微观结构以提高材料的力学性能。在烧结助剂质量分数为3.2%的情况下,经1 780℃,3 h无压烧结,氮化硅大都呈现长柱状β-Si3N4晶粒,具有较大的长径比,显微结构均匀。样品的相对密度达99%,抗弯强度为956.8 MPa,硬度HRA为93,断裂韧性为6.1 MPa·m1/3。具有较大长径比晶粒构成的显微结构是该材料表现较高力学性能的原因。  相似文献   

5.
采用氧化铝(Al2 O3)和氧化钇(Y2 O3)为烧结助剂,利用无压烧结工艺在低温下制备氮化硅陶瓷材料。利用XRD和SEM等着重研究了无压烧结氮化硅陶瓷低温阶段时的物相组成及其致密化。结果表明:当添加剂含量为10%,烧结温度高于1430℃时,α→β相转变较快;当烧结温度达到1510℃时,α相全部转变为β相。  相似文献   

6.
徐锦标  王福 《中国陶瓷》2012,(2):39-41,52
使用燃烧合成的β-Si3N4粉体做原料,以MgO-CeO2体系为添加剂,通过无压烧结工艺制备了氮化硅陶瓷套管。研究了原料起始粒度、升温制度对产物相对密度的影响,并探讨了烧结产物的性能特征和使用状况。研究结果表明,原料起始粒度为1.02μm时烧结产物的相对密度达到最大值。采用多段烧结制度,不但可以提高产物的致密化程度,而且可以提高氮化硅陶瓷的高温机械性能。分段烧结保证了产物中棒状Si3N4颗粒的生长条件,并提高材料的韧性性能。优化配方后烧结的氮化硅陶瓷套管,在多次浸渍高温铝液后不开裂,适用于炼铝用的保护套管。  相似文献   

7.
氮化硅陶瓷的微波烧结   总被引:4,自引:0,他引:4  
利用TE103单模腔微波烧结系统对添加6%(Y2O3+Al2O3)的α、β-SiN4粉的微波加热特征进行了研究。通过选择合理的保温材料和烧结工艺,获得了较高密度、结构均的氮化硅烧结体。实验发现,对于粉末为α-Si3N4的试样,在相变发生的温度内,相变的发生比较密化进程更早而且发生在一个相对更低的温度,研究结果也表明,在微波烧结中相变促进致密化进程。在较短的内警备交高的密度和较好的力学性质,氮化硅的  相似文献   

8.
按照不同的实验方案对碳化硼原料进行烧结,结果发现在2 108~2 226℃下进行无压烧结能得到高纯碳化硼制品,使用Al气和由SiC制得的Si气做为助烧结气,在2 226℃可得到高致密性的B4C制品,体积密度为2.455g.cm-3,约为理论密度的97.4%。  相似文献   

9.
于之东  刘大成 《中国陶瓷》1999,35(3):21-23,25
氮化硅陶瓷广泛用作高温结构材料,是很有前途的陶瓷材料之一。本文研究了氮化硅硅瓷烧结动力学,分析了影响氮化硅陶瓷烧结的因素,为氮化硅陶瓷结提供了依据。  相似文献   

10.
氮化硅陶瓷的烧结   总被引:3,自引:0,他引:3  
氮化硅陶瓷广泛用作高温结构材料,是很有前途的陶瓷材料之一。本文研究了氮化硅陶瓷烧结动力学,分析了影响氮化硅陶瓷烧结的因素,为氮化硅陶瓷烧结提供了依据  相似文献   

11.
以四甲基氢氧化铵为分散剂,糊精为碳源,通过静电稳定作用,制备了高固相含量、分散良好的碳化硅陶瓷浆料。以水溶性N,N–二甲基丙烯酰胺为单体,N,N’–亚甲基双丙烯酰胺为交联剂,采用实验室开发的偶氮[2–(2–咪唑啉–2–基)]丙烷HCl引发体系,在45~50℃引发单体聚合,制备出水基凝胶注模碳化硅素坯,素坯的相对密度达58%,抗弯强度大于40MPa。进一步通过无压烧结制备相对密度高于98%,硬度达28GPa,强度达530 MPa的SiC陶瓷。对素坯和SiC陶瓷的微结构和力学性能进行了测试和表征。结果表明:采用糊精作为碳源可以提高凝胶注模浆料的分散性,避免凝胶过程中的碳阻聚问题,有利于制备出高性能的碳化硅陶瓷材料。  相似文献   

12.
烧结助剂对氮化硅陶瓷显微结构和性能的影响   总被引:3,自引:0,他引:3  
氮化硅中氮原子和硅原子的自扩散系数很低,致密化所必需的扩散速度和烧结驱动力都很小,在烧结过程中需采用烧结助剂。烧结助剂是影响氮化硅陶瓷的显微结构和性能的关键因素之一。有效的烧结助剂不但可以改善氮化硅陶瓷的显微结构,而且可以提高氮化硅陶瓷的高温性能和抗氧化性能。  相似文献   

13.
本研究了Si3N4-MgO—Y2O3-CeO2陶瓷的烧结过程和微观结构,常压烧结氮化硅陶瓷的致密化主要通过液相烧结实现。微观分析结果表明,氮化硅烧结体的显微结构为等轴状的α—Si3N4和长柱状的β—Si3N4相互交织,这种结构有利于提高烧结体的强度和韧性。  相似文献   

14.
低温放电等离子烧结法制备氮化硅陶瓷   总被引:1,自引:0,他引:1  
分别以MgO-Al2O3或MgO-AlPO4作为烧结助剂,采用放电等离子体低温快速烧结方法制备了主相为α相的Si3N4陶瓷材料.采用X射线衍射和扫描电子显微镜分析了样品的物相组成和显微结构;研究了烧结助剂及其含量、烧结温度对陶瓷样品的相对密度与力学性能的影响.结果表明:当采用4%质量分数,下同)MgO-4%Al2O3烧...  相似文献   

15.
本文着重论述了氮化硅陶瓷常压烧结过程中助烧剂的选择、烧结机理和高温性能的改善方面的研究进展。  相似文献   

16.
Pulsed Electric Current Sintering of Silicon Nitride   总被引:1,自引:0,他引:1  
Pulsed electric current sintering (PECS) has been used to densify α-Si3N4 powder doped with oxide additives of Y2O3 and Al2O3. A full density (>99%) was achieved with virtually no transformation to β-phase, resulting in a microstructure with fine equiaxed grains. With further holding at the sintering temperature, the α-to-β phase transformation took place, concurrent with an exaggerated grain growth of a limited number of elongated β-grains in a fine-grained matrix, leading to a distinct bimodal grain size distribution. The average grain size was found to obey a cubic growth law, indicating that the growth is diffusion-controlled. In contrast, the densification by hot pressing was accompanied by a significant degree of the phase transformation, and the subsequent grain growth gave a broad normal size distribution. The apparent activation energy for the phase transformation was as high as 1000 kJ/mol for PECS, almost twice the value for hot pressing (∼500 kJ/mol), thereby causing the retention of α-phase during the densification by PECS.  相似文献   

17.
Porous silicon nitride ceramic with a porosity from 0–0.3 was fabricated by partial hot-pressing of a powder mixture of α-Si3N4 and 5 wt% Yb2O3 as sintering additive. Irrespective of the porosity, the samples exhibited almost the same microstructural features including grain size, grain aspect ratio, and pore size. Porosity dependences of Young's modulus, flexural strength, and fracture toughness ( K I C ) were investigated. All these properties decreased with increasing porosity. However, because of the fibrous microstructure, the decreases of flexural strength and fracture toughness were moderate compared with the much greater decrease of Young's modulus. Thus, the strain tolerance (fracture strength/Young's modulus) increased with increasing porosity. The critical energy release rate also increased slightly with an increasing volume fraction of porosity to 0.166 and remained at the same level with that of the dense sample when the porosity was 0.233. They decreased as porosity increased further.  相似文献   

18.
The present study investigates the influence of the content of Y2O3–Al2O3 sintering additive on the sintering behavior and microstructure of Si3N4 ceramics. The Y2O3:Al2O3 ratio was fixed at 5:2, and sintering was conducted at temperatures of 1300°–1900°C. Increased sintering-additive content enhanced densification via particle rearrangement; however, phase transformation and grain growth were unaffected by additive content. After phase transformation was almost complete, a substantial decrease in density was identified, which resulted from the impingement of rodlike β-Si3N4 grain growth. Phase transformation and grain growth were concluded to occur through a solution–reprecipitation mechanism that was controlled by the interfacial reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号