首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
双频段低噪声放大器的设计   总被引:1,自引:1,他引:0       下载免费PDF全文
适应多标准移动通信终端的迅速发展,设计了能够在800 MHz和1.8 GHz两个不同频段独立工作的低噪声放大器.放大器使用噪声性能优良的SiGeHBT管子,采用Cascode结构减小Miller电容的影响,发射极串联电感消除放大器输入端噪声系数和功率匹配的耦合,输入匹配电路采用单通道串并联LC电路,计算串并联电感和电容值,可以在两个工作频点发生谐振.输出端通过调整负载阻抗到50Ω,采用简单的电路实现功率输出.ADS的仿真结果表明,本文设计的低噪声放大器在800MHz和1.8 GHz两个工作频段的S21分别达到了24.3 dB和21.3 dB,S11均达到了-13 dB,S22均在-27dB以下,两个频段的噪声系数分别为3.3 dB和2.0 dB.  相似文献   

2.
10Gb/s串行接口发送端电路的设计   总被引:1,自引:0,他引:1  
介绍了一个高速多通道SerDes发送端系统的设计.设计采用65nm CMOS工艺,单通道数据率为10Gb/s.数据通道由一个全速率并串转换Mux电路和一个CML驱动器组成:在并串转换电路的高速部分,为了节省功耗和面积,采用TSPC型的锁存器和触发器代替CML型结构;输出驱动器采用CML结构,并加入一个四抽头的前馈均衡电路以减小数据信号码间串扰的影响;最后为了使信号能够无反射地进行传输,设计了阻抗匹配电路.  相似文献   

3.
针对便携式设备快速瞬态响应、低噪声、高电源抑制比等应用需求,提出了一种无片外电容NMOS型低压差线性稳压器(LDO)。该LDO基于浮栅结构,通过具有推挽输出级的放大器辅助控制,减小了电荷泵的噪声耦合;另外,通过取样输出电流控制误差放大器的输出动态范围,极大地提高了电路的瞬态响应能力。电路基于HHGrace 0.35μm BCD工艺设计,仿真结果表明,无外接电容时,负载电流在1μA~400 mA之间跳变,电路的下冲电压为203 mV,过冲电压为101 mV,响应时间小于1.5μs;在10 Hz~100 kHz的频段内,系统输出积分噪声电压为14μV·Hz-1/2。LDO达到了快速瞬态响应和低噪声的需求。  相似文献   

4.
针对无片外电容型低压差线性稳压器(LDO)瞬态响应差的问题,基于40 nm CMOS工艺设计了一种带瞬态负载变化感知的无片外电容型LDO电路。采用有源前馈频率补偿,实现了电路稳定;瞬变检测电路感应负载的变化,为功率管栅极提供充、放电通路,减弱了输出电压波动。仿真结果表明,负载电流在0~100 mA范围内,该LDO的输出过冲电压和下冲电压分别为100 mV和140 mV,稳定时间在1 μs以内。全负载电流范围内,瞬态性能大幅提升。  相似文献   

5.
通过加入对电源电压不灵敏的基准源产生偏置电流,采用MOS管产生的电阻和MOS管电容串联的补偿结构,消除补偿电容带来的零点;并在输出端采用电阻反馈,降低了输出电阻,增强了带负载能力.在1.5 V电压下,偏置约为1 μA.基于BSM3 0.5 μm CMOS工艺,对电路进行了PSPICE仿真.负载为20 pF时,该电路获得了87 dB的开环增益,353 MHz的单位增益带宽,61°的相位裕度和132 dB的共模抑制比,功耗为1.24 mW.  相似文献   

6.
针对宽带放大电路中SMA长缆易导致自激振荡的现象,研究了其分布电容对运算放大器性能的影响,并提出在运放的输出端和负载电容之间串入一50Ω电阻的解决方法。采用TI的OPA691芯片设计完整放大电路,运用Tina仿真分析容性负载驱动电路的频率响应,仿真显示,当加入容性负载后,再加入50Ω电阻可使-180°相位时的幅度特性为-12.26dB,远小于0dB。经过电路实测,自激振荡消失,验证了该解决方案的合理性。  相似文献   

7.
在太赫兹频段,无源器件电容电感的品质因数低、电路的寄生参数以及MOS管的截止频率影响使太赫兹振荡器电路难以实现高功率输出。提出一种300 GHz可调谐振荡器,首先,采用改进的交叉耦合双推(Push-Push)振荡器结构,通过输出功率叠加的方法输出二次谐波300 GHz信号,增加了振荡器的输出功率并突破了MOS管截止频率,并通过增加栅极互连电感增加输出功率。其次,太赫兹振荡器摒弃传统片上可变电容调谐的方式,通过调节MOS管衬底电压改变MOS管的栅极寄生电容实现频率调谐,避免太赫兹频段引入低Q值电容,进一步增加了输出功率。提出的太赫兹振荡器采用台积电40 nm CMOS工艺,基波工作频率为154.5 GHz,输出二次谐波为 309.0 GHz,输出功率可达-3.0 dBm,相位噪声为-79.5 dBc/Hz@1 MHz,功耗为28.6 mW,频率调谐范围为303.5~315.4 GHz。  相似文献   

8.
提出了一种片上集成的低功耗无电容型LDO(low drop out)电路。该电路采用折叠型cascode运放作为误差放大器,通过消除零点的密勒补偿技术提高了环路稳定性;并在电路中加入了一种新的限流保护结构以保证输出电流过大时对LDO的输出进行保护。此外,在电路中加入了省电模式,可在保持LDO输出1.8 V情况下节省大于70%的功耗。该设计采用HHNEC 0.13μmCMOS工艺,仿真结果显示:在2.5~5.5 V电源供电、各个工艺角及温度变化条件下,LDO输出的线性调整率小于2.3 mV/V,负载调整率小于14μV/mA,温度系数小于27×10-6/℃;在正常工作模式下,整个LDO消耗85μA电流;在省电模式下仅消耗23μA电流。  相似文献   

9.
采用0.15μm GaAs pHEMT工艺,研制了单级和两级两种结构的微波毫米波单片分布式放大器.在设计中采用电阻-电容结构代替传统分布式放大器中的终端电阻以降低直流功耗,在输入端加入短路线增强静电保护.根据应用需求设计了相应的放大器电路结构,实现了两种分布式放大器,比较了这两种结构在增益与功率容限方面的特点.第1种分布式放大器采用单级四管结构,在10~40GHz频段内,增益为(9.4±1.1)dB,1dB压缩点最大输出功率为21.5dBm;第2种分布式放大器采用两级双管级联结构,在15~40GHz频段内,增益为(12.2±1.4)dB,1dB压缩点最大输出功率为17dBm.  相似文献   

10.
刘凤君 《UPS应用》2013,(10):33-37
通过实际分析表明.100kVA容量UPS出现的“55kW现象”,在部分产品中确实出现过,它是由两个原因造成的:①是由于某些厂家受市场竞争因素的驱使,用80kw取代100kVA计算选择UPS逆变开关管.把UPS容量减小了20%:②是与UPS的电路结构有关,在UPS的输出端加入了感性无功负载补偿电容Cc,此电容在负载功率因数PF=1时,由补偿电容变成负载电容,增大了UPS的负载电流.使UPS的输出有功功率降低到53kW.这种现象只是在部分产品中出现的,它不是所有100kVAUPS都具有的现象  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号