首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
为开发高能量密度的锂离子电池,补锂技术受到广泛的关注。以LiNO3-LiOH混合锂盐为反应介质和锂源、纳米Fe2O3为铁源,通过熔盐法成功制备出正极补锂材料Li5FeO4,采用正交实验法优化Li5FeO4的合成工艺条件,讨论合成条件对材料电化学性能的影响。将Li5FeO4添加到LiFePO4正极极片表面,并与石墨负极组装成全电池,研究其对全电池电化学性能的影响,以及降低锂离子电池初始容量损失的机制。结果表明,使用熔盐法可制备出纯度高、粒径小且电化学性能好的Li5FeO4正极补锂材料,在0.05 C倍率下具有672.8 mAh·g-1的脱锂比容量;当添加2.8%(质量分数)的Li5FeO4(基于活性物质质量的占比),LiFePO4/石墨全电池...  相似文献   

2.
利用9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)改性3-缩水甘油氧基-丙基三甲氧基硅烷(KH560)合成了阻燃效果优异的硅/磷协效阻燃剂,并与聚氧化乙烯(PEO)、锂盐复合制备聚合物固态电解质,研究其对PEO基电解质的热稳定性和电化学性能的影响。通过对聚合物固态电解质的组成、热稳定性和电化学性能研究表明,当DOPO-KH560质量分数为10%,n(EO)∶n(Li~+)=8∶1时,DOPO-KH560/PEO/LiTFSI电解质的室温电导率高达1.8×10~(-4) S/cm,在4.9 V以下能够保持电化学稳定;以该电解质制备的LiFePO_4/Li半电池可以在80℃下稳定使用,在0.2 C电流密度、循环80次后可逆比容量为136.5 mA·h/g,具有优异的循环稳定性。  相似文献   

3.
采用传统的电子陶瓷生产工艺,制备出一种B2O3-P2O5-SiO2系瓷料.该体系材料加入少量助烧剂可在900℃,空气气氛中烧结,获得低介电常数陶瓷.得到烧结体的介电常数ε≤5、介电损耗tanδ≤3×10-3(1MHz),有望用于超高频叠层片式电感领域.  相似文献   

4.
分别采用传统高温固相法、以表面活性剂辅助所制NH4MnPO4·H2O为前驱体的高温固相法合成了LiMnPO4/C材料,运用XRD、SEM、充放电测试、电化学交流阻抗频谱(EIS)等表征手段考察了不同制备方法对材料结构与性能的影响。结果表明,以表面活性剂辅助所制NH4MnPO4·H2O前驱体来合成LiMnPO4/C材料,可以显著减小初始晶粒尺寸至约30nm。表面活性剂种类对二次颗粒的形貌、结构和电性能有显著影响。以P123为辅助表活剂时,所制材料确保了小晶粒与低团聚的结构特性,有利于其与锂盐高温反应时得到相更纯、晶面生长更优、晶化度更高、与电解液接触面积更大、锂离子扩散更容易、电性能更优的LiMnPO4/C材料。该材料0.2C容量达116.6mAh/g,5C放电容量达79.8mAh/g,且在各倍率下均保持优良循环稳定性。  相似文献   

5.
分别以蔗糖、可溶性淀粉作为碳源,采用固相法在N2气氛中制备尖晶石结构的Li4Ti5O12/C复合正极材料,通过X射线衍射(XRD),扫描电子显微镜(SEM)分析和电化学性能测试表征了Li4Ti5O12/C的晶体结构、表面形貌和电化学性能,结果表明,碳源的加入抑制了晶粒的生长,增大了材料的比表面积,增强了材料的电化学性能,其中,碳源为可溶性淀粉时,样品在0.1C下首次放电比容量达到了164.9mAhg^-1,在2.OCT首次放电比容量可达到125.4mAhg^-1,且循环性能良好。  相似文献   

6.
李军  周燕  唐盛贺  陶熏 《功能材料》2013,44(13):1856-1858
为提高Li4Ti5O12的导电性和倍率性能,应用二步固相法制备了Nb掺杂的Li4Ti4.95Nb0.05O12负极材料,X射线衍射、扫描电镜、激光粒度分布仪、充放电测试、循环伏安和交流阻抗等测试结果表明,合成的样品具有单一的尖晶石结构和平稳的充放电平台,粒径分布均匀,Nb掺杂改性的Li4Ti5O12具有优良的电化学性能,0.1、0.5、1和10C首次放电比容量分别为174.1、159.7、147和123.3mAh/g。10C下,循环20次后容量保持为118.1mAh/g。  相似文献   

7.
以Na2SiO3.9H2O和FeCl2.4H2O为原料,采用低热固相反应获得了分散均匀的β-FeOOH/SiO2前驱体;再以Li2CO3为锂源、聚乙烯醇和超导电炭黑为复合碳源,通过微波辅助固相法合成了Li2FeSiO4/C材料.通过X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)和恒电流充放电测试等方法对材料的结构、微观形貌及电化学性能进行表征.650℃下微波处理12 min可获得结晶好、晶粒细小均匀的Li2FeSiO4/C材料;在选用的微波合成体系下,超导碳和聚乙烯醇热分解的无定形碳不仅利于合成反应的顺利进行,而且提高了Li2FeSiO4的整体导电性能.制备的复合正极材料在60℃下0.05C倍率首次放电容量为129.6 mAh/g,0.5C倍率下为107.5 mAh/g,0.5C下15次循环后保持为104.8 mAh/g,具有较好的放电比容量和良好的循环稳定性能.结果表明,微波辅助固相合成工艺是制备Li2FeSiO4/C复合材料的一种很有前景的方法.  相似文献   

8.
滕雅男  柳欢  徐薇  白杰  李春萍 《功能材料》2023,(2):2109-2122
石榴石型Li7La3Zr2O12(LLZO)固态电解质因高安全性且对锂金属稳定成为固态锂电池的关键材料。但是,石榴石型固态电解质离子电导率还有待提高以及固-固界面不良接触导致的界面电阻大等问题使LLZO基固态电池的实际应用受到了限制。从石榴石型LLZO结构角度出发,探讨了锂离子输运机制并综述了提高离子电导率的策略及最新成果。针对固态锂电池无法避免的界面问题,从LLZO固态电解质与同为固态的电极接触方面,总结了优化界面的具体方法。最后,提出了石榴石型固态电解质未来可研究的方向,并促进其在全固态锂电池中的发展和应用。  相似文献   

9.
对于全固态锂离子电池,固态电解质是制约电池性能的最重要因素之一。以四氢呋喃为反应溶剂,以P2S5,Li2S和LiI为反应原材料,采用湿化学法及后续真空热反应方法成功制备出Li7P2S8I固态电解质。通过同步热分析仪、粉末X射线衍射、拉曼光谱、扫描电子显微镜和能谱仪对所制备电解质样品的形貌、元素分布和物相组成进行表征分析。利用交流阻抗测试、循环伏安法和直流极化等手段研究了Li7P2S8I固态电解质的电化学性能。不同温度对比分析结果表明Li7P2S8I固态电解质的最佳热处理温度为230℃,在此条件下的制备产物具有纳米多孔结构且组成元素分布均匀。电化学测试表明该电解质在25℃下的离子电导率为1.63×10-4 S·cm-1,活化能为0.388 eV,电化学窗口达到5 V,锂离子迁移数高于0.999。该电解质与锂金属组装的对称电池可充放电稳定循环>262次(525 h),表明以此方法制备的Li7P2S8I固态电解质与金属锂负极具有优异的电化学稳定性和化学相容性。  相似文献   

10.
本文以高温固相合成法作为基本的材料制备技术,旨在通过卤素掺杂,提高其电子电导率进而改善电化学性能。用高温固相反应成功合成了Br掺杂Li_4Ti_5O_(12-x)Br_x(0≤x≤0.3)的系列化合物,并对其形貌,物相和电化学性能进行了研究。电镜照片和XRD测试结果与Cl掺杂样品相似。电化学性能测试结果表明,在合成的所有样品中,样品Li_4Ti_5O_(12-x)Br_x(x=0.2)表现出最佳的放电比容量。而且与未掺杂的Li_4Ti_5O_(12)相比,Li_4Ti_5O_(12-x)Br_x(x=0.2)的放电比容量和循环可逆性的都到了很大提高。  相似文献   

11.
A typical approach involving Pechini method and spark plasma sintering (SPS) method was presented for the preparation of high density Li5+xSrxLa3--xBi2O12 (x = 0, 1) ceramics. Phase formation, microstructure, grain size and electrical properties of the specimens were examined using XRD, SEM and alternating current impedance spectroscopy (ACIS). Dense Li5La3Bi2O12 and Li6SrLa2Bi2O12 ceramics with pure garnet-like phase, relative density of 97% and average grain size of about 5 μm were fabricated using this approach. The total conductivities at 298 K of Li5La3Bi2O12 and Li6SrLa2Bi2O12 ceramics prepared by the SPS method are 5.1×10-5 and 6.8×10-5 S/cm, respectively, 2 times higher than that of samples prepared by the conventional sintering method.  相似文献   

12.
PEO基固态聚合物电解质被认为是目前固态锂电池领域极具产业化前景的固态电解质。为适应工业化生产,采用静电纺丝技术制备PEO/LiClO_(4)固态聚合物电解质(SPE),研究纺丝电压、纺丝液质量浓度和锂盐含量对SPE纤维膜形貌和直径的影响。通过扫描电子显微镜观察SPE中纤维的形貌,利用Image J软件分析SPE纤维的直径。通过DSC,XRD,FTIR-ATR和拉伸测试等手段对静电纺丝制备的SPE纤维膜的组成、结构、性能等进行研究。结果表明:当纺丝电压为15 kV、PEO/LiClO_(4)纺丝液质量浓度为6%、[EO]∶[Li^(+)]=10∶1(摩尔比)时,静电纺丝方法制备的PEO/LiClO_(4) SPE纤维膜具有较好的纤维形貌,平均直径为557 nm,分布均一;当[EO]∶[Li^(+)]=10∶1时,SPE纤维膜中PEO的熔点仅为53.8℃,结晶度低至18.9%;电解质在30℃时的离子电导率达到5.16×10^(-5)S·cm^(-1),同时具备良好的电化学稳定性和界面稳定性。  相似文献   

13.
将钛源、锂源和碳源三种化合物一起球磨湿混成均匀浆料,再依次经过喷雾干燥和高温煅烧制得晶粒表面包覆纳米碳层的多孔球形钛酸锂(Li4Ti5O12)材料.通过XRD、SEM、TEM、BET和电化学性能测试等分析手段表明,合成出的Li4Ti5O12/C材料为纳米一次粒子(晶粒)组成的球形二次粒子(颗粒),具有较大的比表面积,达到39.5 m2/g;在0.1C、1.0C和5.0C倍率下的首次放电比容量分别达到172.2、168.2和153.6 mAh/g,并表现出优良的循环性能.晶粒表面包覆碳的多孔Li4Ti5O12材料具有明显的高倍率性能和循环稳定性优势.  相似文献   

14.
本文以纳米Si为原料,通过溶胶-凝胶法,采用不同的煅烧温度,合成了在Si颗粒表面包覆Li4Ti5O12的复合结构材料作为锂离子电池负极材料。结合采用XRD、SEM、TEM、HRTEM和EDS等材料结构分析方法和对合成材料的首次库仑效率、循环稳定性及CV曲线的测试分析,研究了凝胶煅烧温度对合成材料的结构和电化学性能的影响,探讨了Li4Ti5O12的引入对改善Si负极材料循环性能的作用。研究结果表明,在600-800℃的煅烧温度下,溶胶-凝胶过程的产物主要为Li4Ti5O12,产物中Si保持其初始的晶体结构和颗粒特征。提高煅烧温度至1000℃,产物中出现相当量的杂相,大大降低了材料的容量。Si/Li4Ti5O12材料的首次充放电容量随煅烧温度的升高呈现先升高后又下降的变化,并在700℃获得最大值。Li4Ti5O12的引入较明显地改善了Si负极材料的循环稳定性。  相似文献   

15.
γ-AlOOH、TiO2和SiCw为原料,通过反应烧结制备了多孔Al2TiO5-SiCw复合材料,研究了SiCw对Al2TiO5-SiCw复合材料物相、微观组织结构、孔隙率和抗压强度的影响。结果表明: 反应产物中主要物相有Al2TiO5、Al6Si2O13、TiC和SiO2。由于晶须分解速度快,SiCw可全部与TiO2反应生成TiC和SiO2。添加SiCw,一方面显著细化了Al2TiO5基复合材料的微观组织,生成的细小规则的TiC晶粒和存在于Al2TiO5晶界处的Al6Si2O13有利于抑制Al2TiO5晶粒长大,提高其抗压强度。另一方面,因为SiCw改变了原料中颗粒之间的堆积方式,使孔径增大、孔隙率显著提高。生成的一定量的SiO2对晶粒产生黏结,使得Al2TiO5基复合材料的孔洞骨架密实,提高了抗压强度,但当SiCw加入量多时,由于出现较多的玻璃相,会降低抗压强度。  相似文献   

16.
柔性能量存储设备处于下一代电源的最前沿,其中最重要的组件之一就是凝胶电解质。采用自由基聚合法制备PAM/P123锌离子电池用双网络凝胶电解质,结果表明:加入少量三嵌段共聚物P123,宏观上提高凝胶电解质的抗拉强度、韧性和抗压强度,同时微观上使凝胶骨架形成0.6μm的中孔并提高表面孔分布密度,进而提高了电解液的浸润性。PAM/P123系列电解质不仅具有高平均溶胀率,而且在-30~65℃范围内电导率均高于纯PAM电解质。其中PAM/P123-2性能最佳,具有1920.79%平均溶胀率,且在0℃时的离子电导率为36.2 mS·cm^(-1)。使用该凝胶电解质制备的柔性准固态Zn/MnO_(2)电池在0℃下充放电稳定,1000周次循环后容量保持率达82.39%。  相似文献   

17.
PMN-PZT ceramics doped with Li2CO3 and Bi2O3 as sintering aids were manufactured in order to develop the low temperature sintering ceramics for multilayer piezoelectric transformer, and their micro structural, dielectric and piezoelectric properties were investigated. The sintering aids were proved to lower the sintering temperature of doped PMN-PZT ceramics due to the effect of LiBiO2 liquid phase. Optimal values for multilayer piezoelectric transformer application, such as electromechanical coupling factor (kp) of 0.50, mechanical quality factor (Qm) of 2264, and dielectric constant (K) of 1216, and curie temperature (Tc) of 317 °C were found at 0.1 wt.% Li2CO3 added ceramics sintered at 940 °C.  相似文献   

18.
A composite powder of Li4Ti5O12 and carbon (LTO/C) was synthesized by spray pyrolysis using an aqueous solution of Li and Ti with an organic acid. As-prepared LTO/C particles had spherical morphology and nonaggregation characteristics. They also had a particle size of approximately 1 μm with a broad size distribution. As-prepared LTO/C powders were crystallized to have a spinel structure. The addition of lactic acid was most effective for improving the electrochemical properties of LTO/C. The rechargeable capacity of the LTO/C anode obtained from lactic acid was 164 mAh/g at 1 C. The retention was 96% after 100 cycles at 1 C. The rechargeable capacity of the LTO/C anode decreased with an increasing charge rate. The rechargeable capacity of LTO/C obtained from lactic acid was 150 mAh/g at 10 C. The cycle performance of the LTO/C anode obtained from lactic acid also had a high stability at 50 °C.  相似文献   

19.
Pure and doped Li6−x(Zr2−xMx)O7, M = Nb and Ta; x = 0, 0.15 compounds have been prepared by the urea combustion method followed by annealing at 950 °C for 8 h. The samples are characterized by X-ray diffraction and impedance spectroscopy. Ionic conductivities, σionic, were determined in the temperature range of 60-360 °C by impedance spectroscopy. We observe that the Ta doped Li6Zr2O7 has a measurable σionic at ∼160 °C, and at 300 °C exhibits a conductivity value of 1 × 10−3 S/cm. The temperature dependence of the conductivity in the range 100-360 °C obeys an Arrhenius relation, yielding an activation energy of Ea = 0.95 eV (for M = Ta and x = 0.15).The bond valence approach has been used to visualise Li+ ion migration pathways and the conductivity mechanism in these compounds. The lowest energy pathway is found to extend along the [0 1 2] direction. The Bond valence analysis also indicates a significantly anisotropic Li-ion conductivity in compounds with Li6Zr2O7 type structure, predicting activation energies of 1.1 and 0.9 eV for the low energy pathway in undoped and doped Li6Zr2O7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号