首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
准确的交通流预测能够为管理部门提供合理的决策依据,为驾驶员提供实时的道路状况预警,是交通领域至关重要的问题.近年来,相关研究利用图卷积神经网络(GCN)处理非欧式空间结构的特点,对来自复杂路网的交通流数据进行空间相关性建模.然而,现有基于图卷积的交通流预测方法未能充分考虑空间相关性的有向性和动态性这两个重要特点.考虑到...  相似文献   

2.
交通流预测在智能交通系统的建设中起着关键性的作用,然而现有预测方法无法准确地挖掘其潜在的时空相关性,而且大都采用全连接网络进行单步预测。为了进一步挖掘数据的时空特性以及提升长短期预测的精度,提出了一种门控循环图卷积网络(GR-GCN)模型。首先,利用频域上的图卷积结合门控循环单元(GRU)构建一个时空组件(STC)以同时捕获节点的时空相关性,充分地提取数据的时空特征;然后,利用该时空组件构成编码器单元,并将时间序列数据和路网结构数据输入其中;最后,使用门控循环单元作为解码器单元,并按照时间顺序将两者组成一个编码器—解码器(encoder-decoder)结构,依次解码出每个时刻的预测结果。在加利福尼亚交通局(Caltrans)性能评估系统中高速公路数据集PeMSD4和PeMSD8进行了实验。结果表明,所提模型GR-GCN在预测未来15 min、30 min、45 min和60 min的交通流量方面优于大多数现有基准模型,尤其是在长期预测方面。  相似文献   

3.
针对当前大多数模型对交通流数据空间信息挖掘不充分、无法捕获长序列单元间的信息等问题,提出一种基于时域图卷积神经网络的交通流预测模型。通过阈值权重法重构邻接矩阵,将多层近邻机制嵌入图卷积网络进一步挖掘空间信息;引入时域卷积网络,借助膨胀因果卷积扩大感知野并结合残差网络提取时间信息;运用Dense网络输出结果。利用加州性能评估系统中两个数据集进行评估,其结果表明,该模型性能优于常用的基准模型以及最近提出的多时空图卷积网络模型。  相似文献   

4.
准确的交通速度预测是现代智慧交通系统中重要的组成部分,对解决交通拥堵和保障公众出行安全具有重要的意义。针对现有的交通预测模型存在对交通速度中长期预测任务效果不是很好的问题,提出一个新的基于残差时序图卷积网络深度学习框架RSATCN。首先利用可学习的遮罩矩阵和图卷积网络相结合来捕捉空间特征,再利用时间注意力提取时间序列的动态相关性,最后用残差时序网络捕捉时间特征和速度特征。在两个真实世界的数据集上的实验表明,提出的模型在预测交通速度中长期任务方面优于最新的基线。  相似文献   

5.
网络流量预测是有效保障用户QoS措施之一。当前深度学习为基础的网络算法预测中没有充分利用网络拓扑信息。为此,提出了基于高阶图卷积自编码器的网络流量预测模型。该流量预测模型基于软件定义网络(SDN)架构,利用高阶图卷积网络(GCN)获取网络拓扑中的多跳邻域之间的流量相互影响关系,采用门控递归单元(GRU)获取网络的时间相关性信息,利用自编码模型来实现无监督学习和预测。在Abilene网络上采用真实数据进行了仿真对比分析试验,结果表明,提出的方法在网络流量检测方面的MAPE值为41.56%,低于其它深度学习的方法,同时预测准确率方面也达到最优。  相似文献   

6.
交通预测是构建智能交通系统的重要技术,实时准确的交通预测有利于规划路线,提高出行效率.为提高交通速度预测精度,提出一种基于图卷积网络的短时交通速度预测模型.首先对交通速度数据进行时空特征分析,然后结合数据空间特性构造可学习的邻接矩阵来建立图卷积网络,同时考虑到交通数据的时间特性,因此在图卷积的基础上又添加了长短期记忆网...  相似文献   

7.
针对交通流预测模型中路网表征结构难以进行刻画和交通流数据中动态时空相关性难以进行建模以及其中时间特征捕获不充分的问题,提出一种基于注意力机制和时空图卷积循环神经网络的交通流预测模型(ASTG-CRNN)。首先,通过定义节点相对邻近度来确定路网表征结构的关系权重;其次,通过在时空维度上引入注意力机制对动态时空相关性进行建模,再采用图卷积捕获交通流数据中的空间特征;最后,采用卷积神经网络和双向门控循环神经单元的组合模块共同捕捉时间特征,从而能更好地表达交通流的时空特性。在两个公开交通流数据集PeMS04和PeMS08上对模型预测效果进行验证,其结果表明,ASTG-CRNN模型的预测结果均优于其它模型,与时空同步图卷积网络模型(STSGCN)相比,在未来1h内预测结果的MAE、RMSE和MAPE在数据集PeMS08上分别降低了2.71、2.69和0.87%。  相似文献   

8.
客流量预测是城市智能交通系统的重要组成部分,对人们出行和交通管控有着重要的指导意义.针对地铁客流量数据具有时间维度和空间维度属性的特点,提出一种可以同时捕获数据时空特征的预测模型.该模型基于编码器解码器架构设计,其中解码器和编码器均由时空预测模块组成,在该模块中利用图卷积学习地铁站的空间拓朴结构、门控循环单元来捕获数据...  相似文献   

9.
交通流预测是智慧交通领域的研究热点之一, 为了深层次地挖掘交通流序列的时空特征, 提高预测精度, 提出了一种基于离散小波变换(discrete wavelet transformation, DWT)和图卷积网络(graph convolutional network, GCN)短时交通流预测模型. 首先, 利用DWT算法将原始交通序列分解为细节分量与近似分量, 降低交通流数据的非平稳性; 其次, 引入距离因子项优化GCN模型中的邻接矩阵, 进一步提取路网的空间特征; 最后, 将DWT分解的各组分量数据分别作为GCN模型的输入进行预测, 并对各组预测结果进行重构, 得到最终预测值. 利用美国加利福尼亚州交通局PeMS数据库实测交通数据对模型进行测试, 结果表明, 该模型相比于ARIMA、WNN、GCN, 平均绝对误差平均降低57%, 平均绝对百分比误差平均降低59%, 是一种有效的短时交通流预测方法.  相似文献   

10.
大部分的链接预测模型在挖掘节点相似性时过于依赖已知的链接信息,但在真实世界中,已知的观测链接数量通常较少.因此,为了提高模型的鲁棒性,需要提高解耦模型对链接信息的依赖并挖掘节点的潜在特征.文中考虑节点特征和链接之间的潜在关系,提出基于对抗图卷积网络的链接预测模型.首先利用节点间的相似性度量填充邻接矩阵中部分未知链接,缓解链接稀疏对图卷积模型的影响.再利用对抗网络深度挖掘节点特征和链接之间的潜在联系,降低模型对链接的依赖.在真实数据集上的实验表明,文中模型在链接预测问题上具有较好的表现力,在链接稀疏的情况下性能依旧较稳定,同时适用于大规模数据集.  相似文献   

11.
交通流量预测是建设智慧城市中一项重要性高且挑战性大的任务。准确预测需要考虑如节假日、相似节点和天气等多种影响因素组成的时空特征。为了准确捕获到路网路口的时空特征,提出了一种基于图卷积神经网络、时序算法Prophet和Pearson相关系数的预测模型,以实现考虑空间结构、相似节点、节假日及其他影响因素对路口流量的准确预测。首先,为降低相似节点影响引入Pearson相关系数,改进时序算法,实现时间特征的捕捉;然后,采用图卷积神经网络实现空间特征的捕捉;最后,通过线性回归确定图卷积网络和时序算法的融合权重,得到时空融合预测的结果。最终基于成都市出租车轨迹数据分析提取出路口流量数据,并进行了流量预测实验。结果表明,提出的模型准确性优于大多现有的基线方法,与T-GCN、ASTGCN、AGCRN模型相比,MAE分别降低了1.623、0.724、0.161,精度分别提高了0.144、0.068、0.021,验证了该模型在交通路口流量预测中的有效性。  相似文献   

12.
交通流预测是智能交通系统中的重要组成部分,由于交通数据的复杂性,长期而又准确的交通流预测一直是时间序列预测中最具挑战性的任务之一。近年来,研究人员将基于图神经网络的时空图建模方法应用于交通流预测任务,并取得了良好的预测性能。然而,现有的图建模方法仅通过预定义的邻接结构反映道路网络中的空间依赖关系,忽略了各节点之间的序列关联关系对预测的重要性。针对这一局限性,提出了一种自适应门控图神经网络(Ada-GGNN),其核心为通过空间传递模块同时捕获道路网络的空间结构及自适应的时序相关性,并通过门控机制学习节点上的时间序列特征。在两个真实交通网络数据集PeMSD7和Los-loop上的实验结果证明了该模型具有更优越的性能。  相似文献   

13.
为了捕获交通流量数据中复杂的时空动态变化关系以及周期性变化的特征,同时避免道路突发情况引起的误差累计效应,提出一种基于周期图卷积(periodic graph convolution network, PGCN)与多头注意力门控循环单元(multi-head attention gated recurrent unit, MAGRU)组合的交通流量预测模型。首先,模型的时空数据融合模块利用交通流量的周期相似性构建周期图,同时将空间和时间编码信息添加至交通流量序列数据;然后在时空特征提取模块中,GCN子模块捕获周期特征图中的空间特征,MAGRU子模块捕获序列数据中的时间特征;最后通过门控融合机制将两者提取的时空特征进行融合。模型在两个真实的交通流量数据集上进行了实验。结果表明,该模型相较于多个最新基准模型,在MAE、RMSE、MAPE三个预测误差指标上平均降低了5.4%、22.8%、10.3%,R2精确度指标平均提高了11.6%。说明模型在预测精度方面有显著的改进,并能有效减少误差累积效应。  相似文献   

14.
织物的分类研究在织物生产、服装设计等领域有着广泛应用。提出织物力模型,结合多帧时序信息和图卷积神经网络,给出一种用图来描述织物运动的新方法,通过分析和提取织物视频中的运动特征,实现织物的分类。该方法使用30种不同织物在风力吹动下的视频作为实验数据集,将视频每一帧作为一个图节点,然后根据视频时序性连接同类织物节点的边。此外结合织物力模型对原视频图像作预处理以提取力流特征作为视觉单词存储,再依据视觉单词探索同类与不同类织物间的潜在联系,由此将欧氏织物视频数据转换为非欧氏织物图数据,最后使用图卷积神经网络进行分类处理。该方法避免了传统织物分类过程中织物纹理、颜色、外部光照等因素的影响,突破了传统分类方法只能对少数织物进行分类的限制,有较好的分类效果。  相似文献   

15.
时空预测任务在神经科学、交通、气象等领域应用广泛.气温预测作为典型的时空预测任务,需要挖掘气温数据中固有的时空特征.针对现有气温预测算法存在预测误差大、空间特征提取不充分的问题,提出一种基于图卷积网络和门控循环单元的气温预测(GCN-GRU)模型.首先,使用重新分配权重和多阶近邻连接方式修正图卷积网络(GCN),以有效...  相似文献   

16.
为了充分获取交通流量数据中隐藏的复杂动态时空相关性,提高交通流量预测精度,提出一种多头注意力时空卷积图网络模型MASCGN。首先,采用多头注意力机制为路网中的交通传感器节点自动分配注意力权重,实现对不同邻居节点的权值自适应匹配,充分获取空间相关性;其次,采用带有门控和注意力机制的时空卷积网络充分提取时间序列相关性,并使用残差块结构实现时空卷积层之间的连接,使得模型更具有泛化能力;最后,分别提取周相关、日相关、邻近时间的序列数据,输入三个并行的时空组件以挖掘周、日、邻近三个时间窗口间的时间周期相关性,并通过全连接层获取最终的交通流量预测结果。利用高速公路交通数据集PEMSO4、PEMSO8进行了15 min、30 min、45 min和60 min的交通流量预测实验。实验结果表明MASCGN模型与现有基线模型相比,在未来短期和长期的交通流量预测任务上都具有更优的建模能力。  相似文献   

17.
为了解决当前图卷积网络需要依赖大型数据集,从而导致时间和空间复杂度上升问题,提出了基于自我监督学习策略的层智能图卷积网络(RRLFS-L-GCN)。首先,通过在层智能图卷积网络(layer-wise graph convolutional network, L-GCN)中添加多任务机制以提高算法的泛化能力;然后,设计一种随机删除固定步长边(aandomly remove links with a fixed step, RRLFS)的自我监督学习策略,从而提出基于自我监督学习策略的层智能图卷积网络算法;最后,通过边预测验证RRLFS-L-GCN的性能。实验结果表明,该算法的识别率最高可达97.13%。对于Cora测试集,该算法所得识别准确率比未改进的层智能图卷积网络算法提高了6.73%。对于PubMed测试集,该算法所得识别准确率比未改进的层智能图卷积网络算法提高了8.13%。与图卷积网络相比,在Citeseer数据集上,识别准确率提高了18.43%。  相似文献   

18.
为了扩大时空图卷积网络的预测范围,将它应用在关联关系未知场景下的多变量时间序列预测问题,提出一种附加图学习层的时空图卷积网络预测方法(GLB-STGCN)。图学习层借助余弦相似度从时间序列中学习图邻接矩阵,通过图卷积网络捕捉多变量之间的相互影响,最后通过多核时间卷积网络捕捉时间序列的周期性特征,实现对多变量的精准预测。为验证GLB-STGCN的有效性,使用天文、电力、交通和经济四个领域的公共数据集和一个工业场景生产数据集进行预测实验,结果表明GLB-STGCN优于对比方法,在天文数据集上的表现尤为出色,预测误差分别降低了6.02%、8.01%、6.72%和5.31%。实验结果证明GLB-STGCN适用范围更广,预测效果更好,尤其适合自然周期明显的时间序列预测问题。  相似文献   

19.
现有时序知识图谱推理主要是基于静态知识图谱的推理方法,通过知识图谱的结构特征挖掘潜在的语义信息和关系特征,忽略了实体时序信息的重要性,因此提出一种基于实体活跃度及复制生成机制的时序知识图谱推理方法(EACG)。首先,通过改进的图卷积神经网络对多关系实体建模,有效挖掘知识图谱的潜在语义信息和结构特征。其次,时序编码器基于实体活跃度学习实体的时序特征。最后,使用复制生成机制进一步学习知识图谱的历史信息,提升对时序数据建模的能力。在时序知识图谱数据集ICEWS14、ICEWS05-15、GDELT上推理的实验结果表明,EACG在MRR评估指标中分别优于次优方法2%、10%和5%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号