首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
采用石灰中和改性二水磷石膏,再添加水泥、机制砂及增塑剂制备水泥基湿拌抹灰砂浆,分析了磷石膏、水泥及增塑剂不同掺量下湿拌砂浆的凝结时间、稠度以及力学强度等物理性能,并采用X射线衍射(XRD)及扫描电镜(SEM)分析了磷石膏在湿拌砂浆中的作用机理。结果表明,随着磷石膏用量增加,湿拌砂浆的凝结时间延长,28 d抗压强度及14 d拉伸黏结强度降低;随着水泥用量增加,砂浆的凝结时间缩短,强度逐渐增大;随着增塑剂用量的增加,砂浆的黏结性能及润滑性能逐步优异,凝结时间逐渐增加。当控制材料掺量比例(质量分数)磷石膏为35%、机制砂为48%、水泥为17%、外掺石灰为2%、增塑剂为0.3%时,砂浆的凝结时间为25 h,28 d抗压强度为6.2 MPa,14 d拉伸黏结强度为0.31 MPa,均符合行业标准JC/T 230—2007《预拌砂浆》中WP M5质量技术指标要求。磷石膏在水泥基湿拌砂浆中的主要作用是参与反应的磷石膏提供硫酸根并与水化铝酸钙反应生成钙矾石,形成提高砂浆强度的矿物起胶结作用,未反应的磷石膏作为细集料起填充作用。  相似文献   

2.
CFB脱硫灰渣是循环流化床锅炉采用脱硫工艺后所得的副产物。针对CFB脱硫灰渣的资源化利用开展将其用作水泥混合材的试验研究,分析灰渣的适宜掺量和主要影响机理。研究表明:CFB脱硫灰、渣在化学组成和颗粒组成上都有较大差异。以脱硫灰为混合材,随其在水泥中的掺量增加,浆体凝结速度明显变缓;试样早强发挥较慢,但28 d强度都能赶上空白对照样的相应强度值,脱硫灰在水泥中最优掺入量为20%左右。将磨细脱硫渣作为水泥混合材,随其掺量增加,试样标准稠度需水量亦呈增大趋势,对水泥凝结时间的影响规律也与脱硫灰相似;水泥早期强度随脱硫渣增加而有所降低,但对28 d强度发展没有明显的不利影响。脱硫渣除可作为混合材外,还能替代部分缓凝石膏,其最大合理掺量为10%左右。  相似文献   

3.
再生骨料干拌砂浆是一种绿色新型建筑材料,既解决建筑垃圾的利用问题,又减轻了建筑原材料的过度开采,降低碳排放,是材料工业可持续发展的必然趋势。本文采用单纯重心型设计法对再生骨料掺量、水灰比和水泥用量三个因素进行研究以优化再生骨料干拌砂浆的配合比,以稠度、2 h稠度损失率和抗压强度作为关键的性能评价指标。结果表明,单纯重心型设计法可用于优化再生骨料砂浆的配合比。在优化的配合比下,再生骨料砂浆的稠度、2 h稠度损失率和强度之间可以达到很好的平衡。  相似文献   

4.
为了促进建筑垃圾的再生利用,通过再生微粉替代部分水泥制备干混砂浆,探究再生微粉细度、掺量和复掺比对砂浆稠度、抗压强度、抗折强度和显微结构的影响规律。结果表明,随着再生微粉颗粒细度的减小,砂浆稠度整体呈下降趋势,28 d抗压、抗折强度均呈增加趋势,研磨40 h时,其强度达到最大值。随着再生微粉掺量的增加,砂浆稠度呈下降趋势,28 d抗压、抗折强度呈先增加后降低的趋势,当掺量为10%(质量分数)时,抗压强度达到最大值。随着再生微粉复掺比(质量比)的增大,砂浆稠度呈下降趋势,砂浆的28 d抗压、抗折强度呈先增加后降低的趋势,当研磨20 h的微粉与未研磨微粉复掺比为6∶4时,其抗压强度达到最大值。  相似文献   

5.
本文研究了钢渣、矿渣、石膏和粉煤灰对钢渣水泥抹面砂浆性能的影响。结果表明:钢渣水泥复合材料抗压强度和抗折强度随着钢渣掺量的增加而呈减小的趋势;矿渣(20%)复配改性钢渣水泥复合材料,28d最佳抗压强度和抗折强度(49.2MPa和6.8MPa)分别较未掺矿渣的提高了3.3%和16.2%;当脱硫石膏掺量在3%时,可提高钢渣-水泥-矿渣力学性能;当增塑剂掺量控制在0.4%,水泥抹灰砂浆施工性能较好,砂率在1:4时,钢渣水泥抹灰砂浆28d抗压强度可达到13.5MPa(满足M10等级要求),当砂率为1:5时,钢渣水泥抹灰砂浆28d抗压强度可达到7.5MPa(满足M5等级要求)。  相似文献   

6.
水泥颗粒分布对其使用性能的影响   总被引:8,自引:5,他引:8  
研究了水泥的颗粒分布对I型硅酸盐水泥标准稠度用水量、凝结时间、水化热、强度、与外加剂适应性及砂浆干缩性能的影响。研究结果表明:同一比表面积的水泥,颗粒分布越窄,则标准稠度用水量越大,凝结时间越长,1d水化热越小,1d胶砂强度越低,与外加剂适应性越差,砂浆干缩率越大。随着比表面积增大,凝结时间缩短,1d水化热增大,强度提高,砂浆干缩率增大。当颗粒分布较窄时,随着比表面积增大,1d胶砂强度增幅不大,与外加剂适应性显著变差。  相似文献   

7.
研究了硅酸盐水泥掺量变化对脱硫石膏基砂浆的稠度、体积密度、抗压强度、抗折强度、软化系数、黏结拉伸强度、干燥收缩性能等物理力学性能的影响规律.结果表明,硅酸盐水泥能显著提高脱硫石膏基砂浆稠度,增大流动性,使得新拌砂浆体积密度和硬化砂浆体积密度略微增大;显著提高脱硫石膏基砂浆的抗压强度、抗折强度和软化系数,尤其是后期强度;能明显提高黏结拉伸强度,显著降低干燥收缩率,改善干燥收缩性能,甚至使得砂浆早期具有微膨胀特点;硅酸盐水泥在脱硫石膏基中的掺量宜控制在20%以内.  相似文献   

8.
研究了粉煤灰掺量变化对脱硫石膏基砂浆的稠度、体积密度、抗压强度、抗折强度、粘结拉伸强度、干燥收缩性能等物理力学性能的影响规律。结果表明,粉煤灰对脱硫石膏基砂浆物理力学性能具有显著影响,能使得脱硫石膏基砂浆稠度明显增大,新拌砂浆体积密度和硬化砂浆体积密度略微增大,抗压强度、抗折强度和粘结拉伸强度均显著提高;粉煤灰也能显著改善脱硫石膏基砂浆的干燥收缩性,降低干燥收缩率;且当粉煤灰掺量为20%~30%时,其对脱硫石膏基砂浆的上述物理力学性能改善效果最佳。  相似文献   

9.
周明凯  李梦龙 《硅酸盐通报》2017,36(9):3186-3191
CFB矸石渣压碎值大、吸水率高,且级配不良、粒形差,用其配制的砂浆强度高,但流动性差,流动度经时损失率大,易抹性差.CFB矸石渣经球破研磨后,压碎值大幅度降低,级配和粒形均得到改善.用其配制的砂浆流动性得到改善,且抗折强度提高了11.7%,抗压强度提高了13.8%.随着用水量的增加,矸石渣砂浆的流动性大幅度改善,而强度仅略有降低.通过加大用水量,利用CFB矸石渣作机制砂,可配制出流动性好,强度高的砂浆.  相似文献   

10.
刘文斌  徐永红 《粉煤灰》2008,20(1):20-21
通过掺加保水增稠荆对砂浆性能的改性研究,确定了在粉煤灰的用量约为30%时,保水增稠荆的最佳用量约为2%.结果表明,在灰砂比为1:6时,用粉煤灰取代部分水泥,砂浆的稠度、保水率、强度等并没有明显下降.  相似文献   

11.
楼胜俊 《粉煤灰》2010,22(3):14-16,19
研究了粉煤灰、矿渣微粉复合双掺时对水泥砂浆的强度以及抗模拟酸雨侵蚀性能的影响。通过试验发现:随着粉煤灰、矿渣微粉总掺量的不断增加,砂浆强度逐渐下降;各不同配比的砂浆经pH值为4.0的模拟酸雨干湿交替循环腐蚀后的强度变化规律为先升高后下降;与纯水泥砂浆试件相比,如粉煤灰、矿渣微粉的掺入过高,则会降低试件的强度值,但是如以强度增长率来评价砂浆的抗酸雨侵蚀能力,则各不同比例的粉煤灰、矿渣微粉复合双掺等量取代水泥配制的砂浆的强度增长率均优于同等条件下纯水泥砂浆试件,即粉煤灰、矿渣微粉复合双掺对水泥砂浆试件在模拟酸雨条件下的强度发展有改善作用。  相似文献   

12.
对不同粉煤灰、矿渣掺量的胶砂抗压、抗折强度进行了研究.结果表明,水泥胶砂中随粉煤灰取代水泥量增加,胶砂3d、28d抗压和抗折强度不断减小.水泥胶砂中随矿渣取代水泥量增加,胶砂3d抗压和抗折强度不断减小;当矿渣取代量小于55%时,胶砂28d的抗压和抗折强度均稍有提高,当矿渣取代量大于60%时,胶砂28d的抗压和抗折强度均...  相似文献   

13.
研究了粉煤灰掺量对矿渣-水泥胶砂28 d、45 d和350 d耐磨性和强度的影响.在矿渣-水泥胶砂中掺入10%的粉煤灰后胶砂28 d、45 d和350 d耐磨性可增大也可减小,但当粉煤灰掺量≥20%时,均降低,且随粉煤灰掺量继续增加,不断降低.在矿渣-水泥胶砂中掺入10%粉煤灰后胶砂28 d、45 d强度减小,且随粉煤灰掺量继续增加,不断减小.在矿渣-水泥胶砂中掺入粉煤灰后,胶砂350 d强度可增加也可降低,取决于粉煤灰掺量和矿渣取代水泥量.随掺粉煤灰的矿渣-水泥胶砂强度增大,胶砂磨损率总体趋势减小,但并不单调减小.  相似文献   

14.
通过筛分和破碎两种方式分别获得粒径区间为0.6~1.18 mm、0.3~0.6 mm的粉煤灰渣,并用其等体积替代对应粒径区间的细骨料,分析粉煤灰渣对砂浆工作性和强度的影响,探究粉煤灰渣的最优替代粒径区间。结合扫描电镜(SEM)、能谱分析(EDS)等方法分析了粉煤灰渣替代细骨料后砂浆试件的强度变化机理。基于砂浆最优替代粒径区间结果,验证了砂浆混凝土试件的强度和抗冻性。研究结果表明:分别以筛分方式和破碎方式得到的0.3~0.6 mm粒径区间粉煤灰渣替代对应区间细骨料后,其砂浆试件强度均与基准组(未替代)基本一致;而以筛分方式得到的0.3~0.6 mm粒径区间粉煤灰渣替代对应区间细骨料后,其混凝土试件强度和抗冻性与基准组基本一致。在水泥提供的氢氧化钙环境下粉煤灰渣表面生成水化硅酸钙,从而增加了水泥和粉煤灰渣界面胶结强度,强化水泥与粉煤灰渣界面区域,凹凸不平的粉煤灰渣表面与水泥浆咬合嵌锁,保证了试件的强度。  相似文献   

15.
利用热态磨耗实验台研究快速水化团聚颗粒在流化床中热态条件下的磨耗特征.研究表明,飞灰团聚用水量、添加剂用量和流化速度是影响飞灰团聚颗粒磨耗速率大小的关键因素.随着流化速度的降低和添加剂用量的提高,团聚颗粒的磨耗速率降低.飞灰团聚用水量在40%左右时,团聚颗粒磨耗速率最低.亦即在上述条件下团聚颗粒在流化床中停留时间相对较长,进而飞灰碳降低的幅度和自由氧化钙的利用率可能较大.  相似文献   

16.
研究了粉煤灰、矿渣微粉双掺对水泥砂浆的强度以及抗模拟酸雨侵蚀性能的影响.试验发现:随着粉煤灰、矿渣微粉总掺量的增加,砂浆强度逐渐下降;粉煤灰、矿渣微粉双掺对水泥砂浆试件在模拟酸雨条件下的强度发展有改善作用.  相似文献   

17.
王长安  唐冠韬  李昊  车得福 《化工进展》2019,38(9):4295-4301
针对循环流化床锅炉(CFB)底渣利用率偏低的问题,提出一种新的底渣处理应用方案——对底渣进行急冷处理后,将其作为脱硫剂或水泥混合材进行综合利用。本文通过搭建CFB锅炉底渣急冷实验系统,制备了不同渣温下的急冷底渣样品;然后选取亿利底渣和42.5标号的水泥作为研究对象,探讨了急冷底渣作混合材对水泥性能的影响。实验结果表明:急冷会破坏底渣颗粒形状,导致外壳成分发生变化。急冷处理不仅造成CaSO4峰值显著降低,而且使得Ca(OH)2的特征峰变强。在相同的CFB底渣掺比下,与原始底渣相比,急冷底渣作为水泥混合材时,虽然无助于提高抗折抗压强度,但能缩短凝结时间,减少安定性值。同时,还能减少水泥标准稠度需水量,提升水泥的密实程度,对水泥的力学性能和抗侵蚀性有着一定的积极作用。  相似文献   

18.
The fly ash (high carbon content and high unreacted CaO) recirculation in CFB is a typical method to improve the carbon burnout efficiency and the calcium utilization ratio. While the effectiveness of it is limited by the resident time and the reactivity of the re-injected fly ash particles. In the present research, an improved fly ash recirculation method is suggested in which the CFB fly ash is mixed with water or the mixtures of additives (such as waste water of paper mill, cement, sodium silicate, and carbide slag) and water in a blender. Then, this mixture is re-injected into the combustion chamber of CFB by a sludge pump. Because the temperature in CFB is higher, the fly ash was flash hydrated. At the same time, it was dehydrated and agglomerated. The size of agglomerates is bigger than that of original particle and their attrition rate is lower. Therefore the resident time of agglomerates is much longer than that of fine fly ash particles. The absorption of SO2 is higher than that of original particles, too. This results in high carbon burnout efficiency. The hydrated lime also improves the calcium utilization.  相似文献   

19.
研究了脱硝粉煤灰的铵含量对水泥胶砂物理性能的影响规律,提出脱硝粉煤灰残留铵的安全含量阈值。结果表明:随着粉煤灰中铵含量的逐渐升高,水泥标准稠度用水量、需水量比和含气量呈现逐渐升高的趋势,而胶砂强度、活性指数和流动度逐渐降低,且凝结时间显著延长。粉煤灰铵含量对水泥安定性、水化热、假凝和干缩性能的影响并不明显。在一般工程情况下,建议脱硝粉煤灰的铵含量应不大于200 mg/kg。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号