首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为解决多电平矩阵变换器(MMC)中非线性元件带来的建模难题,应用Park变换技术,给出基于空间矢量调制模式下MMC不含开关元件的等效电路模型详尽的演化过程,得出了多电平矩阵变换器输入侧电压、输出侧电压和输入电流的解析表达式,以及电压增益、输入电流、稳态时变压器变比的仿真特性曲线。在该模型的基础上建立了MMC主电路小信号模型和状态方程。并首次用构造Lyapunov函数的方法分析MMC稳定性,避免了对高阶微分方程的数值求解,为MMC稳定性分析提供了简便有效的手段。  相似文献   

2.
模块化多电平变换器(MMC)的小信号阻抗建模是分析基于MMC的电力电子系统谐振和稳定性的关键.针对MMC阻抗建模中不能全面考虑桥臂电流和电容电压中稳态谐波分量的影响问题,引入谐波状态空间(HSS)建模方法来描述多谐波耦合特性.首先对基于HSS的MMC模型进行了介绍.随后在提出的MMC HSS模型的基础上,建立了MMC的小信号阻抗模型,该模型能够包含MMC内部的所有谐波,并全面考虑了交流电压闭环控制方案对其影响.提出的模型揭示了MMC内部动态特性和控制动态特性对MMC阻抗的影响.最后,通过仿真和实验对所提出的阻抗模型进行了验证.  相似文献   

3.
半桥子模块是柔性直流输电系统中模块化多电平换流阀(MMC)的核心单元,根据运行工况参数计算半桥子模块器件的功率损耗是进行绝缘栅双极晶体管(IGBT)模块结温探测的关键,准确的结温波动信息对MMC换流阀系统的可靠性研究和安全运行尤为重要。与一般的两电平逆变器不同,MMC系统中桥臂电流具有与生俱来的直流偏置特性。该文提出了一种基于电热耦合模型的半桥子模块中IGBT器件功率损耗与瞬态结温计算的数学解析方法。首先研究半桥子模块中各导通器件电流复现方法,建立基于开关周期的平均功率损耗计算模型,基于瞬态热阻抗建立半桥子模块中IGBT器件的热网络模型;然后通过一个2MW的柔性直流输电系统算例,计算子模块中上下管开关器件的功率损耗和瞬态结温变化,计算速度是时域仿真模型的1 000倍;最后通过有限元模型验证了文中所提电热耦合模型的有效性。  相似文献   

4.
基于模块化多电平变换器(modular multilevel converter, MMC)的DC/DC变换器因其模块化结构,容易实现低中高压之间的电压转换而广泛应用于直流配电网。该文研究了一种基于模块化多电平变换器的电隔离双向DC/DC变换器,根据DAB变换器的典型两电平电压波形,提出了一种基于能量平衡的模块化多电平变换器调制方法,可以在离散水平上产生适应的电压增益,并对MMC桥臂子模块电压平衡关系和能量平衡关系进行了理论分析,最后通过仿真方法验证了所提出的基于能量平衡的模块化多电平变换器调制方法的性能要优于经典能量平衡策略。  相似文献   

5.
针对现有模块化多电平变换器(MMC)拓扑结构繁多、控制策略通用性差的问题,此处提出了一种MMC拓扑的通用控制方法.首先针对MMC的典型拓扑结构进行了拓扑分析并分类,典型拓扑包括MMC、模块化多电平矩阵变换器(MMMC)和六角形模块化多电平AC/AC换流器(Hexverter).然后通过基于状态空间表示的电流控制和支路能...  相似文献   

6.
模块化多电平变换器(MMC)因其具有公共直流母线的模块化拓扑结构的特点而被广泛应用于高压直流输电、电能质量治理以及电气传动等领域。分析MMC拓扑结构,建立MMC数学模型,研究MMC运行控制规律;对MMC内部环流产生机理进行分析,推导了桥臂电流与内部环流的关系;分析了MMC模型预测控制策略。最后通过实验验证了模型预测控制策略能更有效地控制子模块电容电压平衡,减小环流幅值。  相似文献   

7.
《电网技术》2021,45(8):3164-3172
模块化多电平换流器(modularmultilevelconverter,MMC)复杂的电力电子化特征,使其与交直流电网间存在不易描述的多频率耦合现象。基于谐波状态空间原理建立起MMC主电路和包括电流矢量与环流抑制等在内的控制系统的小信号模型,通过二者的接口关系整合出MMC系统模型,其涵盖了多频率谐波的动态特性。以该模型为基础,提出MMC系统谐波传递函数计算方法,并根据谐波传递函数矩阵给出交、直流电流及MMC内部环流的谐波耦合阻抗全局关系,进一步分析了扰动谐波与这3组不同电流谐波分量的频率耦合特性。最后,通过电磁暂态仿真模型与文中建立的小信号模型进行不同工况下的仿真与计算的对比,验证了小信号建模的有效性和谐波耦合特性分析的正确性。  相似文献   

8.
《电力学报》2019,(1):86-92
模块化多电平变换器(MMC)是一种结构独特的多电平变换器,相对于传统多电平变换器,其结构简单且高度模块化、输出灵活、谐波畸变率较小,因此成为大电压高功率场合的研究热点。由于MMC的调制技术和电容电压均衡是其稳定运行的基础和关键,因此研究分析了MMC的拓扑结构和工作原理,学习了载波移相调制技术(Carrier Phase-Shifted SPWM,CPS-SPWM)的原理,并提出将载波移相调制和子模块电压均衡控制相结合的控制策略。在Matlab/Simulink里搭建了基于载波移相调制和子模块电容电压均衡控制的三相MMC仿真模型,结果验证了研究提出的控制策略在MMC中等效开关频率较高,输出电压谐波特性良好,可以很好地控制电容电压波动,是一种适合MMC的控制策略。  相似文献   

9.
断线故障的故障特性分析是制定断线保护方案的基础。首先,文中以金属回线双极直流系统为对象,根据直流系统中模块化多电平换流器(MMC)在故障前后的状态变化,基于叠加定理得出MMC在直流系统发生故障时的等效电路模型,构建直流系统断线故障下的等效电路。然后,通过改进极模变换矩阵推导其在不同故障类型下的复合模量等值网络,分析不同断线故障的模量特征;在此基础上,利用2模和0模电流的变化量构建断线故障类型识别的相平面,实现断线故障的分类;同时,提出基于1模电流变化量的区内外断线故障辨识流程。最后,在PSCAD/EMTDC中建立了仿真模型,验证了所提保护方法的快速性和可靠性。  相似文献   

10.
模块化多电平变流器(modular multilevel converter, MMC)与电网间的频率耦合会影响变流器的阻抗特性,常规研究未考虑频率耦合造成的阻抗模型不准确,对分析系统阻抗特性造成了困扰。针对此问题,建立考虑频率耦合下MMC的全阶阻抗模型,进而分析系统稳定性。在此基础上提出一种基于陷波滤波器的MMC阻抗优化方案,解决弱电网互联系统的稳定问题。在分析MMC传统阻抗建模不能有效发现实际低频段振荡的原因基础上,研究频率耦合在MMC建模中的产生机理和影响程度。根据频率耦合的产生机理,建立小信号模型及变量关系,推导出频率耦合下的MMC全阶阻抗模型。依据全阶模型,提出一种基于陷波器的系统阻抗优化方案,有效解决了MMC弱网互联系统的低频振荡及稳定分析问题。仿真结果验证了耦合下MMC全阶阻抗模型的准确性及低频振荡阻抗优化的可行性。  相似文献   

11.
模块化多电平变换器(MMC)因其具有公共直流母线的模块化拓扑结构的特点而被广泛应用于高压直流输电、电能质量治理及电气传动等领域。分析MMC拓扑结构,建立MMC数学模型,研究MMC运行控制规律;对MMC内部环流产生机理进行分析,推导了桥臂电流与内部环流的关系;分析了MMC优化模型预测控制(OMPC)策略,最后通过实验验证了OMPC策略能更有效地控制子模块电容电压平衡、减小环流幅值。  相似文献   

12.
针对基于模块化多电平换流器的高压直流(modular multi-level converter-high voltage direct current,MMC-HVDC)输电系统,为了快速而有效地计算其直流侧单极接地故障下直流线路最大过电压,详细地分析了几种相应的等效计算模型.首先,基于能量守恒定律,得到模块化多电平换流器(modular multi-level converter,MMC)的等效模型I.在该模型中,MMC被拆分为直流侧等效电路和交流侧等效电路,其中前者由2个受控电流源和1个理想电容组成.其次,考虑到单极接地故障下MMC子模块电容电压几乎不变的特性,并且直流电缆可以使用π等效电路模型替代,就能得到MMC的等效模型Ⅱ.最后,基于时域仿真软件PSCAD/EMTDC搭建了400 MW/±200 kV数字仿真模型,验证了2种等效模型的有效性.  相似文献   

13.
为了提高模块化多电平变换器(MMC)系统的可靠性,提出了一种基于滑模观测器的MMC子模块(SM)开路故障诊断方法.首先根据MMC的运行原理设计了滑模观测器.再利用观测器估计的输出与传感器测量的输出构造残差信号,通过对残差信号的分析实现子模块开路故障的检测.然后根据故障子模块输出电压特性确定故障位置.最终,在MATLAB/Simulink中搭建单相MMC仿真模型,模拟其中的一个子模块的IGBT发生开路并进行故障诊断.结果表明提出故障诊断方法的正确性.  相似文献   

14.
在高压大容量无功补偿领域,采用模块化多电平变换器(MMC)作为静止同步补偿器(STATCOM)主电路拓扑,目前已经在工程上得到了应用。在模块化多电平变换器上、下桥臂参数不对称时,基频交流分量在上、下桥臂之间分配不均,同时桥臂电流中的直流分量和二倍频分量也会流入交流侧。建立了桥臂参数不对称MMC-STATCOM的交流侧和直流侧模型,分析了不同频率下等效电路中桥臂不对称对稳态电流的影响,提出了抑制基频共模分量及二倍频共模分量并维持上、下桥臂直流电压稳态平衡的控制策略。仿真和实验结果验证了理论分析的正确性和控制策略的有效性。  相似文献   

15.
为了简化模块化多电平换流器(modular multilevel converter,MMC)的控制和降低环流中的2倍频分量,提出了一种模块化多电平换流器的无差拍控制方法。建立了模块化多电平换流器单相等效电路的状态方程,根据对状态方程的分析,以换流器的环流参考值和负载电流参考值作为无差拍控制的输入。用劳斯判据进行了稳定性分析,得到了系统稳定运行时K_p、K_i的取值范围。在Matlab/Simulink软件平台下搭建了10电平的MMC仿真模型,并且在实验室搭建了MMC原型样机。分析仿真和实验结果可知,与传统的控制方法相比,提出的无差拍控制方法输出电流畸变率更小,环流2倍频分量和子模块电容电压纹波更低,表明所提出的控制方法不仅PI参数少,控制简单,而且具有较好的并网电能质量。  相似文献   

16.
模块化多电平变换器以其优越的性能在中高压大功率电能变换场合得到了广泛的研究和应用。推导了模块化多电平变换器(modular multilevel converter,MMC)的离散状态方程,针对MMC多输入多输出的非线性特性,提出一种基于有限控制集合的简化模型预测控制,可以有效减少模型预测控制所需的循环计算和预测值计算次数。所提模型预测控制由最优输出电平求解和电容电压平衡控制两部分组成。首先求取满足交流电流和环流控制要求的桥臂输出电压电平,并以此电平及其邻近的电平为有限控制集合,考虑上下桥臂电容电压之和与之差的控制,求得桥臂输出电平最优解;电容电压平衡控制则由电压预测值排序法实现,用电压增量表示附加的开关动作,修正电容电压预测值后再进行排序,实现电压平衡控制并降低平均开关频率。在PSCAD/EMTDC中搭建MMC时域仿真模型,仿真结果验证了所提方法的正确性和有效性。  相似文献   

17.
模块化多电平换流器(modular multilevel converter, MMC)可靠性研究,近年来在关键器件物理特性退化方面取得丰富成果。然而,相关研究成果没能在系统级可靠性评估中得到充分体现。为了将运行工况与器件老化以及可靠性相关联,提出了一种基于MMC任务剖面的器件老化可靠性评估方法。首先推导MMC关键器件功率损耗,结合任务剖面,在结温计算中采用雨流计数算法,根据线性疲劳累积损伤原理,得到在电热耦合工况下器件的损伤与寿命。针对器件老化问题,通过分析不同工况下的老化增量,得到相较于变应力工况,在恒高应力下更为明显的器件的老化现象。改进了基于指数分布的可靠性分析方法,为定期维护中模块器件更换方案提供了参考依据。  相似文献   

18.
<正>模块化多电平变换器(Modular Multilevel Converter,MMC)是一种采用模块级联的新型电能变换拓扑结构,具有损耗低、波形质量好、安装维护容易、可靠性高等诸多优点,是近年来研究的热点课题,并在高压柔性直流输电领域中得到了迅猛发展。同时,模块化多电平变换器在诸如高压变频调速等其他中高压大功率领域中也有着广泛的应用前景。尽管有以上优点,模块化多电平换流器目前仍存在成本高昂、  相似文献   

19.
适用于环境保护需求,替代船上柴油发电机发电的岸电系统蓬勃发展。应用于岸电系统的模块化多电平整流器工作时温升过高会降低其运行可靠性,损耗是反映其温升的重要参数。在忽略整流器其他损耗因素情况下,针对开关器件的损耗建立简化模型,并结合电热转换原理建立模块化多电平变换器(MMC)整流器半桥子模块开关器件的温升分析模型,从而确定温升与开关器件损耗的关系式。基于建立的损耗及温升模型,仿真分析载波移相和最近电平逼近2种调制方式对开关器件温升的影响,与实际工程条件下的验证一致。结果表明载波移相调制方式下开关器件温升更小,实际工程中选用该调制方式可以在一定程度上抑制温升。文中搭建的温升模型可为后续研究其他温升抑制措施提供模型依据,可验证温升抑制措施的有效性。  相似文献   

20.
基于模块化多电平换流器(Modular Multilevel Converter, MMC)的柔性直流输电系统近年来受到广泛的关注。针对电网电压不平衡下MMC运行情况进行研究,提出了一种能量均衡控制策略,以改善模块化多电平变换器在不平衡网压条件下的换流器内部能量平衡。该策略通过分析桥臂能量与各电气信号耦合关系,在0?β坐标系下建立桥臂能量数学模型,前馈补偿的加入提高了MMC在交流电网不对称故障和突发电压不平衡情况下的抗干扰能力。通过优化换流器内部电流分量进行桥臂能量平衡控制,实现网压不平衡下交流侧电流与换流器内部能量协同控制。最后,通过Matlab/Simulink平台搭建了双端MMC仿真模型。仿真结果验证了所提出控制策略的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号