首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
针对石墨烯压力传感器的高气密性封装要求,设计了一种应用于石墨烯压力传感器的Au-Si键合工艺。采用Au-Si键合工艺只需要在传感器的密封基板表面生长一层100 nm的SiO2,并在生长的SiO2表面溅射金属密封环,密封环金属采用50 nm/300 nm的Ti/Au。使用倒装焊机在380℃以及16 kN的压力环境下保持20 min完成传感器芯片与基板的键合,实现石墨烯压力传感器的气密性封装。键合完成后对键合指标进行表征测试,平均剪切力可达19.596 MPa,平均泄露率为4.589×10-4 Pa·cm3/s。通过对键合前后石墨烯传感器芯片电阻检测,电阻输出平均值变化了3.36%,键合前后电阻输出相对稳定。对传感器进行静态压力检测,其灵敏度>0.3 kΩ/MPa,非线性<1%FS。实验结果表明,石墨烯压力传感器采用Au-Si键合工艺进行气密封装不仅工艺简单,且强度高。  相似文献   

2.
Au/Sn共晶键合技术在MEMS封装中的应用   总被引:1,自引:0,他引:1  
研究了Au/Sn共晶圆片键合技术在MEMS气密性封装中的应用。设计了共晶键合多层材料的结构和密封环图形,盖帽层采用Ti/Ni/Au/Sn/Au结构,器件层采用Ti/Ni/Au结构,盖帽层腔体尺寸为4.5 mm×4.5 mm×20μm,Au/Sn环的宽度为700μm,优化了键合工艺,对影响气密性的因素(如组分配比、键合前处理和键合温度等)进行了分析。两层硅片在氮气气氛中靠静态的压力实现紧密接触。在峰值温度为300℃、持续时间为2 min的条件下实现了良好的键合效果,其剪切力平均值达到16.663 kg,漏率小于2×10-3 Pa·cm3/s,满足检验标准(GJB548A)的要求,验证了Au/Sn共晶键合技术在MEMS气密封装中的适用性。  相似文献   

3.
研究了Cu/Sn等温凝固键合技术在MEMS气密性封装中的应用。设计了等温凝固键合多层材料的结构和密封环图形,优化了键合工艺,对影响气密性的因素(如密封环尺寸等)进行了分析。在350°C实现了良好的键合效果,其最大剪切强度达到27.7MPa,漏率~2×10-4Pa·cm3/sHe,完全可以满足美国军方标准(MIL-STD-883E)的要求,验证了Cu/Sn等温凝固键合技术在MEMS气密封装中的适用性。  相似文献   

4.
研究了用Ag-Sn作为键合中间层的圆片健合。相对于成熟的Au-Sn键合系统(典型键合温度是280℃),该系统可以提供更低成本、更高键合后分离(De-Bonding)温度的圆片级键合方案。使用直径为100mm硅片,盖板硅片上溅射多层金属Ti/Ni/Sn/Au,利用Lift-off工艺来形成图形。基板硅片上溅射Ti/Ni/Au/Ag。硅片制备好后,将盖板和基板叠放在一起送入键合机进行键合。键合过程在N2气氛中进行,键合过程中不需要使用助焊剂。研究了不同键合参数,如键合压力、温度等对键合结果的影响。剪切强度测试表明样品的剪切强度平均在55.17MPa。TMA测试表明键合后分离温度可以控制在500℃左右。He泄漏测试证明封接的气密性极好。  相似文献   

5.
《微纳电子技术》2019,(3):248-252
为了提高MEMS陀螺的品质因数(Q值),提出了一种晶圆级真空封装工艺。先在陀螺盖帽晶圆上刻蚀出浅腔,然后在浅腔结构上制备钨(W)金属引线,再通过PECVD工艺淀积介质层,在介质层上制备钛/金(Ti/Au)键合环,最后将盖帽晶圆与制备好的结构晶圆完成金硅共晶键合,并利用吸气剂实现晶圆的长久真空封装。经测试,采用本方案的封装的气密性与金属层厚度紧密相关,调整合适的金属层厚度后可使真空泄漏速率小于2.0×10-12 Pa·m~3·s-1。此外,设计了一种特殊的浅腔阵列结构,该结构将金硅键合强度从小于20 MPa提升至大于26 MPa,同时可防止键合时液相合金向外溢流。对陀螺芯片的性能测试表明,该真空封装工艺简单有效,封装气密性良好,Q值高达168 540,满足设计指标要求。  相似文献   

6.
为了提高高g微机械加速度传感器在极端恶劣环境中应用的可靠性,根据自制的高g微机械加速度传感器芯片,研究设计了一种新型"台阶式"传感器芯片的盖帽封装结构。利用圆片级键合工艺和有限元分析(FEA)方法确定了盖帽封装结构材料与尺寸的设计方案。优化微电子机械系统(MEMS)加工工艺流程完成对盖帽封装结构的加工,并通过数字电子拉力机对实现圆片级盖帽封装的传感器芯片进行键合强度测试。测试结果表明,键合强度为35 000 kPa,远大于抗过载封装设计要求下的键合强度值(401.2 kPa),证明了盖帽封装结构设计的可行性和可靠性。  相似文献   

7.
MEMS器件封装的低温玻璃浆料键合工艺研究   总被引:1,自引:0,他引:1  
玻璃浆料是一种常用于MEMS器件封装的密封材料.系统研究了MEMS器件在低温下使用玻璃浆料键合硅和玻璃的过程.与大多数MEMS器件采用的玻璃浆料相比(烧结温度400℃以上),此工艺(烧结温度350℃)在键合完成后所形成的封装结构同样具有较高的剪切强度(封装器件剪切强度大于360 kPa),同时具有较好的气密性(合格率达到93.3%),漏率测试结果符合相关标准.结果表明,在保证MEMS器件封装剪切强度和气密性的同时,降低键合温度条件是可以实现的.  相似文献   

8.
为提高微机电系统(MEMS)加速度计的可靠性,减小因为引线键合断裂造成的传感器失效,该文设计了一种基于低温共烧陶瓷的无引线键合封装。该封装采用阳极键合技术将低温共烧陶瓷基板与芯片连接,同时将电路转接板同步集成。结果表明,该封装结构可减小传感器的封装尺寸,有效提高了MEMS加速度计的可靠性。  相似文献   

9.
研究了利用Cu/Sn对含硅通孔(TSV)结构的多层芯片堆叠键合技术。采用刻蚀和电镀等工艺,制备出含TSV结构的待键合芯片,采用扫描电子显微镜(SEM)对TSV形貌和填充效果进行了分析。研究了Cu/Sn低温键合机理,对其工艺进行了优化,得到键合温度280℃、键合时间30 s、退火温度260℃和退火时间10 min的最佳工艺条件。最后重点分析了多层堆叠Cu/Sn键合技术,采用能谱仪(EDS)分析确定键合层中Cu和Sn的原子数比例。研究了Cu层和Sn层厚度对堆叠键合过程的影响,获得了10层芯片堆叠键合样品。采用拉力测试仪和四探针法分别测试了键合样品的力学和电学性能,同时进行了高温测试和高温高湿测试,结果表明键合质量满足含TSV结构的三维封装要求。  相似文献   

10.
对基于BCB的圆片级封装工艺进行了研究,该工艺代表了MEMS加速度计传感器封装的发展趋势,是MEMS加速度计产业化的关键。选用3000系列BCB材料进行MENS传感器的粘结键合工艺试验,解决了圆片级封装问题,在低温250℃和适当压力辅助下≤2.5bar(1bar=100kPa)实现了加速度计的圆片级封装,并对相关的旋涂、键合、气氛、压力等诸多工艺参数进行了优化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号