首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 62 毫秒
1.
采用水热法制备了Ni3Si2O5(OH)4,在823K下通过氢气还原制备出了具有核壳结构Ni/SiO2催化剂,探讨以Ni/SiO2为催化剂,反应时间、温度、压力等因素对硝基苯液相加氢性能的影响,确定了硝基苯液相加氢适宜的条件,在该条件下硝基苯的转化率为97%,苯胺的选择性为99%。  相似文献   

2.
用乙二醇法和浸渍法制备两种负载在堇青石上的钴基负载催化剂,并用XRD、XPS、TPR和TPD对制备的催化剂进行表征,比较两种催化剂催化氧化(燃烧)甲苯的活性。研究结果表明,与浸渍法制备的Co/cord催化剂相比,乙二醇法制备的催化剂Co/cord-EG对甲苯催化燃烧活性明显提高。应用乙二醇法制备Co/cord-EG负载型催化剂,Co元素主要以Co2+存在于载体表面;而传统浸渍法制备的Co/cord催化剂,Co元素是以Co2+与Co3+的两种化学状态存在于载体表面。应用乙二醇法制备Co/cord-EG负载型催化剂,有助于在载体表面形成比较均匀的吸附活性位。应用乙二醇法制备的Co/cord-EG催化剂,催化活性组分能在载体表面上以更小颗粒而且更高的分散度存在,从而能明显提高其催化活性。  相似文献   

3.
以双二苯基膦甲烷(DPPM)为合成单元,采用超交联法制备超交联双二苯基膦甲烷(HCPs-DPPM),并以其为载体用水合肼还原制备负载Ni纳米粒子催化剂HCPs-DPPM-Ni,Ni纳米粒子的尺寸通过改变Ni的负载量和pH来调节。同时,制备了商业活性炭(AC)负载Ni的催化剂Ni/AC作为对比催化剂。通过FT-IR、BET、SEM和XRD等对催化剂进行表征,结果表明催化剂HCPs-DPPM-Ni具有大量微孔和介孔结构,比表面积能够达到626m~2/g,其中Ni的负载量为50%的催化剂HCPs-DPPM-Ni(50%)具有最优的催化活性,当反应温度为25℃,4-硝基苯酚(4-NP)初始浓度为0.5mmol/L时,HCPs-DPPM-Ni(50%)催化剂加入量为0.83mg/mL、NaBH_4加入量为0.125mol/L的条件下反应4min,4-NP的转化率能够达到99%。  相似文献   

4.
1,3-丁二烯选择性加氢是石油化工中有效脱除1,3-丁二烯的方法。选用金属有机骨架ZIF-67作为载体,通过浸渍和H2还原法控制合成了Pd/ZIF-67和PdCu/ZIF-67复合纳米催化剂。采用XRD、氮气低温物理吸附、TEM、EDS、XPS等方法对Pd/ZIF-67和PdCu/ZIF-67进行了系统的物理化学性质表征,并在石英微型固定床上探索了其在1,3-丁二烯加氢反应中的催化活性、选择性和稳定性。结果表明,Pd/ZIF-67和PdCu/ZIF-67(1∶1)中Pd和Cu分别以Pd2+和Cu2+存在,Pd纳米粒子和Pd–Cu纳米粒子高度分散在ZIF-67上。由于金属Pd–Cu和载体ZIF-67之间的相互作用以及Pd和Cu双金属间的几何效应,PdCu/ZIF-67(1∶1)的催化活性低于Pd/ZIF-67。Pd/ZIF-67在50℃催化1, 3-丁二烯加氢时,1,3-丁二烯的转化率和总丁烯的选择性分别为99.9%和79.6%。PdCu/ZIF-67(1∶1)在130℃催化反应7 h后1,3-丁二烯的转化率和总丁烯的选择...  相似文献   

5.
采用溶胶-凝胶法和浸渍法制备了系列SO_4~(2-)/TiO_2-Al_2O_3固体超强酸催化剂,运用XRD、NH_3-TPD、FT-IR、PyFTIR、XPS、SEM等技术手段,研究了复合催化剂材料的结构与性质,初步探讨了固体超强酸SO_4~(2-)/TiO_2-Al_2O_3催化剂的构效关系,得到适宜的催化剂制备条件为:n(TiO_2)/n(Al_2O_3)=1∶2、硫酸浸渍浓度1mol/L、催化剂焙烧温度500℃。考察了物料物质的量比、催化剂用量、反应时间等对催化合成冰片的影响。结果表明,在物料物质的量比为1∶0.4,催化剂用量为α-蒎烯质量的7%,采用程序升温方式(65℃-1h,75℃-4h,90℃-1h)加热的条件下,固体超强酸SO_4~(2-)/TiO_2-Al_2O_3催化剂的催化活性最高,α-蒎烯的转化率高达100%,龙脑的收率高达59.74%,SO_4~(2-)/TiO_2-Al_2O_3固体超强酸催化剂在重复使用6次的条件下,α-蒎烯的转化率均不变,龙脑的收率下降2.99%,催化剂的重复使用性良好。  相似文献   

6.
The efficiency of heterogeneous photocatalysis for converting solar to chemical energy is low on a per photon basis mainly because of the difficulty of capturing and utilizing light across the entire solar spectral wavelength range. This challenge is addressed herein with a plasmonic superstructure, fashioned as an array of nanoscale needles comprising cobalt nanocrystals assembled within a sheath of porous silica grown on a fluorine tin oxide substrate. This plasmonic superstructure can strongly absorb sunlight through different mechanisms including enhanced plasmonic excitation by the hybridization of Co nanoparticles in close proximity, as well as inter- and intra-band transitions. With nearly 100% sunlight harvesting ability, it drives the photothermal hydrogenation of carbon dioxide with a 20-fold rate increase from the silica-supported cobalt catalyst. The present work bridges the gap between strong light-absorbing plasmonic superstructures with photothermal CO2 catalysis toward the complete utilization of the solar energy.  相似文献   

7.
Surface plasmon‐based photonics offers exciting opportunities to enable fine control of the site, span, and extent of mechanical harvesting. However, the interaction between plasmonic photothermic and piezoresponse still remains underexplored. Here, spatially localized and controllable piezoresponse of a hybrid self‐polarized polymeric‐metallic system that correlates to plasmonic light‐to‐heat modulation of the local strain is demonstrated. The piezoresponse is associated to the localized plasmons that serve as efficient nanoheaters leading to self‐regulated strain via thermal expansion of the electroactive polymer. Moreover, the finite‐difference time‐domain simulation and linear thermal model also deduce the local strain to the surface plasmon heat absorption. The distinct plasmonic photothermic–piezoelectric phenomenon mediates not only localized external stimulus light response but also enhances dynamic piezoelectric energy harvesting. The present work highlights a promising surface plasmon coordinated piezoelectric response which underpins energy localization and transfer for diversified design of unique photothermic–piezotronic technology.  相似文献   

8.
Photoacoustic imaging (PAI) and imaging-guided photothermal therapy (PTT) in the second near-infrared window (NIR-II, 1000–1700 nm) have received increasing attention owing to their advantages of greater penetration depth and higher signal-to-noise ratio. Plasmonic nanomaterials with tunable optical properties and strong light absorption provide an alternative to dye molecules, showing great prospects for phototheranostic applications. In this review, the research progress in principally modulating the optical properties of plasmonic nanomaterials, especially affecting parameters such as size, morphology, and surface chemical modification, is introduced. The commonly used plasmonic nanomaterials in the NIR-II window, including noble metals, semiconductors, and heterostructures, are then summarized. In addition, the biomedical applications of these NIR-II plasmonic nanomaterials for PAI and PTT in phototheranostics are highlighted. Finally, the perspectives and challenges for advancing plasmonic nanomaterials for practical use and clinical translation are discussed.  相似文献   

9.
10.
Photothermal therapy triggered by near‐infrared light in the second biowindow (NIR‐II) has attracted extensive interest owing to its deeper penetration depth of biological tissue, lower photon scattering, and higher maximum permissible exposure. In spite of noble metals showing great potential as the photothermal agents due to the tunable localized surface plasmon resonance, the biological applications of platinum are rarely explored. Herein, a monocomponent hollow Pt nanoframe (“Pt Spirals”), whose superstructure is assembled with three levels (3D frame, 2D layered shells, and 1D nanowires), is reported. Pt Spirals exhibit outstanding photothermal conversion efficiency (52.5%) and molar extinction coefficients (228.7 m2 mol?1) in NIR‐II, which are much higher than those of solid Pt cubes. Simulations indicate that the unique superstructure can be a significant cause for improving both adsorption and the photothermal effect simultaneously in NIR‐II. The excellent photothermal effect is achieved and subsequently verified in in vitro and in vivo experiments, along with superb heat‐resistance properties, excellent photostability, and a prominent effect on computed tomography (CT) imaging, demonstrating that Pt Spirals are promising as effective theranostic platforms for CT imaging‐guided photothermal therapy.  相似文献   

11.
光热治疗是一种非侵入式的新型肿瘤治疗手段,可弥补传统治疗方式的不足。碳纳米材料作为一种高效的光热剂,在肿瘤光热治疗中表现出巨大的应用潜力。本研究采用超声辅助法使邻苯三酚与甲醛5 min快速聚合,经煅烧处理制备了单分散、粒径均一的碳球。该碳球兼具优良的细胞生物相容性和高光热转换效率。在808 nm近红外光照射下,碳球呈现良好的光热效应和光热稳定性,光热转换效率达到41.4%。细胞实验表明,碳球无明显细胞毒性,对肿瘤细胞具有显著的光热杀伤效果。制备的高光热效应碳球光热剂有望用于肿瘤光热治疗。  相似文献   

12.
Photothermal conversion ability (PCA) and cell internalization ability (CIA) are two key factors for determining the performance of photothermal agents. The previous studies mostly focus on improving the PCA by exploring new photothermal nanomaterials. Herein, the authors take the hybrids of graphene and gold nanostar (GGN) as an example to investigate the gradually enhanced phototherapy effect by changing the PCA and CIA of photothermal therapy (PTT) agent simultaneously. Based on the GGN, the GGN and the reduced GGN protected by bovine serum albumin (BSA) or BSA‐FA (folic acid) are prepared, which are named as GGNB, rGGNB, and rGGNB‐FA, respectively. The rGGNB showed an enhanced PCA compared to GGNB, leading to strong cell ablation. On the other hand, the 1,2‐dioleoyl‐3‐trimethylammoniumpropan (DOTAP) can activate the endocytosis and promote the CIA of rGGNB, further help rGGNB to be more internalized into the cells. Finally, rGGNB‐FA with the target ability can make itself further internalized into the cells with the aid of DOTAP, which can significantly destroy the cancer cells even at the low laser density of 0.3 W cm?2. Therefore, a new angle of view is brought out for researching the PTT agents of high performance.  相似文献   

13.
14.
15.
Solar‐driven Fischer–Tropsch synthesis represents an alternative and potentially low‐cost route for the direct production of light olefins from syngas (CO and H2). Herein, a series of novel Co‐based photothermal catalysts with different chemical compositions are successfully fabricated by H2 reduction of ZnCoAl‐layered double‐hydroxide nanosheets at 300–700 °C. Under UV–vis irradiation, the photothermal catalyst prepared at 450 °C demonstrates remarkable CO hydrogenation performance, affording an olefin (C2–4=) selectivity of 36.0% and an olefin/paraffin ratio of 6.1 at a CO conversion of 15.4%. Characterization studies using X‐ray absorption fine structure and high‐resolution transmission electron microscopy reveal that the active catalyst comprises Co and Co3O4 nanoparticles on a ZnO–Al2O3 mixed metal oxide support. Density functional theory calculations further demonstrate that the oxide‐decorated metallic Co nanoparticle heterostructure weakens the further hydrogenation ability of the corresponding Co, leading to the high selectivity to light olefins. This study demonstrates a novel solar‐driven catalyst platform for the production of light olefins via CO hydrogenation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号