首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
行星齿轮箱振动信号具有非平稳特性,需要一定的先验知识和诊断专业知识设计和解释特征从而实现故障诊断。为了实现行星齿轮箱的智能诊断,提出一种基于经验模态分解(Empirical mode decomposition,EMD)和深度卷积神经网络(Deep convolutional neural network,DCNN)的智能故障诊断方法。首先对振动信号进行经验模态分解得到内禀模式函数(Intrinsic mode function, IMF);然后利用DCNN融合特征信息明显的IMF分量,并自动提取特征;最后,将特征用于分类器分类识别,从而实现行星齿轮箱故障诊断的自动化。试验结果表明:该方法能准确、有效地对行星齿轮箱的工作状态和故障类型进行分类。  相似文献   

3.
4.
针对行星齿轮箱振动信号故障特征提取困难的问题,提出了一种基于EMD-SVD与概率神经网络相结合的故障诊断方法。首先,利用经验模态分解方法将去噪后的振动信号自适应地分解为多个本征模函数。其次,利用相关系数和方差贡献率选取一定量的本征模函数,并将其构成的矩阵进行奇异值分解得到特征向量。最后,将特征向量输入概率神经网络进行故障诊断。在行星齿轮箱故障诊断实验台上进行了实验,并与基于能量熵构成的特征向量进行了对比,结果验证了该方法的有效性。  相似文献   

5.
为了有效捕获旋转机械振动信号中蕴含的故障特征,进而高效地完成故障诊断任务,设计了一种将二维特征图像和轻量化神经网络相结合的故障诊断模型。首先,将采集到的一维振动信号以改进的集成经验模态分解(ModifiedEnsembleEmpiricalModeDecomposition,MEEMD)算法进行分解,得到本征模态函数(IntrinsicModeFunction,IMF)分量,并筛选相应的IMF分量进行求和重构,以增强振动信号的幅值波动,进而使得马尔科夫变迁场(MarkovTransitionField,MTF)能够更为有效地表征重构信号中的故障特征;然后,将MTF生成的二维特征图像输入到残差深度可分离卷积神经网络(ResidualDepthSeparableConvolutionalNeuralNetwork,ResDSCNN)模型中,进行特征提取与故障诊断。使用行星齿轮箱故障数据集验证了模型性能。结果表明,该模型对于各类齿轮故障的诊断正确率可达98%以上。  相似文献   

6.
7.
针对行星齿轮箱复合故障准确分类问题,应用了改进自适应噪声完备集合经验模态分解(ICEEMDAN)和支持向量机(SVM)相结合的故障诊断方法。首先,将行星齿轮箱的不同故障信号分别进行ICEEMDAN分解,得到各阶内禀模态函数(IMF);其次,利用各阶IMF分量与原信号的相关性大小,剔除虚假的IMF分量;最后,以优选IMF分量的多尺度模糊熵均值作为特征向量,输入到多分类SVM中进行故障分类,分类准确率高达100%,实验结果证明了该方法的可行性。  相似文献   

8.
行星齿轮箱结构复杂,当发生故障时其振动信号呈非线性非平稳特点且故障信号微弱,为了能够准确提取行星齿轮磨损故障信息的特征,提出局部均值分解(local mean decomposition,简称LMD)结合S变换(LMD?S)的信号处理方法,且转化为时频分布图像,应用时频图像纹理特征进行行星齿轮故障诊断。首先,把振动信号经由LMD?S变换处理后利用相关分析方法滤除干扰且转化为时频分布图像;其次,利用非均匀局部二值模式(local binary patterns,简称LBP)提取不同工况下采集数据的图像纹理特征;最后,采用极限学习机识别出3种故障类型,故障识别准确率达到90%,证明了此方法的有效性。  相似文献   

9.
经验模态分解(EMD)及以其为基础发展而来的方法在故障诊断领域中得到广泛应用,对于分解后固有模态函数(IMF)的有效选择及基于有效IMF故障特征的准确提取至关重要。为更高效地解决此类问题,提出一种基于具有自适应白噪声的完整集成经验模态分解(CEEMDAN)结合信号质量指数(SQI)算法与奇异值分解(SVD)的齿轮箱局部故障最优特征提取算法。以具有不同故障级别的齿轮局部裂纹进行试验验证方法的有效性,通过试验获取原始数据并进行CEEMDAN分解,利用SQI进行有效IMF选取,再结合SVD对有效IMF进行分解以获取最优特征向量,并输入至BP神经网络进行训练与测试,最后将测试结果与数种常规方法进行比较。结果表明,针对齿轮箱的局部故障,提出的CEEMDAN-SQI-SVD算法识别精度高,并优于数种常规方法。  相似文献   

10.
针对低转速齿轮箱齿轮故障特征频率低、故障特征频率易被背景噪声淹没,使其难以准确提取的问题,提出了基于参数优化的变分模态分解(parameter optimization variational mode decomposition,简称POVMD)和循环自相关函数(cyclic autocorrelation function,简称CAF)结合的故障诊断方法。首先,通过POVMD对原始信号进行分解,选用余弦相似度度量选取敏感的本征模态函数(intrinsic mode function,简称IMF);其次,计算其循环自相关函数谱,获得包含调制特征的循环自相关函数谱切片;最后,使用Teager能量算子(Teager energy operator,简称TEO)算法对切片解调,提取故障特征频率。同时将本方法与相关方法进行了对比分析,特征频率提取效果更加显著,仿真信号和实验数据分析验证了该方法的有效性和可靠性。  相似文献   

11.
对加载为0.2A的断齿故障齿轮进行分析。利用互信息去除虚假EMD分解出的imf分量,对有用的imf分量进行hilbert变换,再对其包络的频谱进行分析。  相似文献   

12.
针对齿轮箱故障振动信号大多是多分量的调幅-调频信号,而传统包络分析法又太依赖经验值选取参数的问题,对齿轮箱振动信号的分解方法、包络分析方法以及提取特征值等方面进行了研究,提出了一种基于局部均值分解(local mean de-composition,LMD)的包络谱特征值的方法。该方法首先利用局部均值分解对齿轮箱信号进行了处理,获得了包含有不同频率特征的PF(product function)分量,最后对包含有主要故障信息的第一级PF分量进行了包络分析,提取了包络谱的特征频率,以此来判别齿轮箱的工作状态和故障类型。利用齿轮箱正常状态、局部损伤、磨损故障3种齿轮箱振动信号的实例进行了验证。研究结果表明,利用LMD分解后求取包络谱特征频率的方法能够较为准确地判别齿轮箱的工作状态和故障类型。  相似文献   

13.
针对齿轮箱故障诊断过程中采集到的振动信号通常都比较复杂多变,随机性和偶然性也比较强的特点,提出了一种基于随机权重粒子群优化(Random Weight Particle Swarm Optimization,RWPSO)算法的双隐含层反向传播(Back Propa-gation,BBP)神经网络(RWPSO-BP)的齿轮箱故障诊断方法.对江苏千鹏诊断工程有限公司所公布的齿轮箱故障诊断实验中的原始振动数据进行多特征值提取;利用主成分分析法(Principal Component Analysis,PCA)对特征集进行降维处理,将多个变量的数据集转变为较少新变量的数据集(即主成分),把所选主成分归一化处理后利用双隐含层RWPSO-BP 神经网络进行诊断分析;将分析结果与单隐含层RWPSO-BP神经网络对测试样本的识别结果作对比.最后的诊断结果为:双隐含层RWPSO-BP神经网络的误差更小,可以较为准确地对齿轮箱故障类型进行有效的识别.  相似文献   

14.
针对齿轮箱故障诊断过程中采集到的振动信号通常都比较复杂多变,随机性和偶然性也比较强的特点,提出了一种基于随机权重粒子群优化(Random Weight Particle Swarm Optimization,RWPSO)算法的双隐含层反向传播(Back Propa-gation,BBP)神经网络(RWPSO-BP)的齿轮箱故障诊断方法.对江苏千鹏诊断工程有限公司所公布的齿轮箱故障诊断实验中的原始振动数据进行多特征值提取;利用主成分分析法(Principal Component Analysis,PCA)对特征集进行降维处理,将多个变量的数据集转变为较少新变量的数据集(即主成分),把所选主成分归一化处理后利用双隐含层RWPSO-BP 神经网络进行诊断分析;将分析结果与单隐含层RWPSO-BP神经网络对测试样本的识别结果作对比.最后的诊断结果为:双隐含层RWPSO-BP神经网络的误差更小,可以较为准确地对齿轮箱故障类型进行有效的识别.  相似文献   

15.
针对齿轮箱故障诊断过程中采集到的振动信号通常都比较复杂多变,随机性和偶然性也比较强的特点,提出了一种基于随机权重粒子群优化(Random Weight Particle Swarm Optimization,RWPSO)算法的双隐含层反向传播(Back Propa-gation,BBP)神经网络(RWPSO-BP)的齿轮箱故障诊断方法.对江苏千鹏诊断工程有限公司所公布的齿轮箱故障诊断实验中的原始振动数据进行多特征值提取;利用主成分分析法(Principal Component Analysis,PCA)对特征集进行降维处理,将多个变量的数据集转变为较少新变量的数据集(即主成分),把所选主成分归一化处理后利用双隐含层RWPSO-BP 神经网络进行诊断分析;将分析结果与单隐含层RWPSO-BP神经网络对测试样本的识别结果作对比.最后的诊断结果为:双隐含层RWPSO-BP神经网络的误差更小,可以较为准确地对齿轮箱故障类型进行有效的识别.  相似文献   

16.
改进Elman网络在发动机齿轮箱故障诊断中的研究   总被引:3,自引:0,他引:3  
针对发动机齿轮箱故障诊断系统,在Elman网络的理论框架的基础之上,分析了Elman网络用于故障诊断的不足,提出了改进Elman网络,并应用于发动机齿轮箱故障的故障诊断.本文采取经典的"频域"分析方法对齿轮箱进行故障诊断,并建立了基于改进Elman神经网络的齿轮箱故障诊断模型,结果表明:该方法具有精度高、收敛快、可以避免局部最小的优点,从而为发动机齿轮箱故障诊断提供了一种更有效的方法.  相似文献   

17.
基于加权概率神经网络的齿轮箱抗噪故障诊断   总被引:1,自引:0,他引:1  
崔逊波  邹俊  阮晓东  傅新 《机电工程》2010,27(2):54-56,82
针对齿轮箱现场故障诊断易受噪声干扰、诊断精度低的问题,提出了一种基于区分性权重概率神经网络的故障诊断方法。该方法考虑了不同子带特征受噪声的污染程度不同,提高噪声影响小的特征在诊断中的权重,降低噪声影响大的特征在诊断中的权重,以提高诊断的噪声鲁棒性,最终实现了齿轮箱故障的诊断。试验研究结果表明,与BP神经网络和概率神经网络诊断相比,该方法具有较高的诊断正确率和较强的诊断鲁棒性;并且该方法中平滑度参数对故障诊断精度影响不大,可以避免该参数选择困难的问题,具有良好的工程应用前景。  相似文献   

18.
提出一种利用盲源分离技术对齿轮箱混合故障进行诊断的方法。该方法以最小互信息量为准则,采用自然梯度的自适应算法求解统计独立源信号的估计值,并根据分离信号的频谱成功地提取了混合故障的特征信息,有效地诊断出齿轮箱所处的故障状态。  相似文献   

19.
为了实现轧机传动部件的早期故障诊断,利用LabVIEW便捷的图形界面和MATLAB强大的数值分析功能,开发了一套齿轮箱故障诊断系统.通过LabVIEW调用MATLAB中的小波工具箱,并结合包络解调等方法实现故障信息的准确提取.经过模拟故障数据和高线精轧机故障的诊断实践,表明该系统运行可靠,并且能更早地识别故障隐患.  相似文献   

20.
Aiming at fault diagnosis, we study vibration signals obtained from gearboxes under various conditions. We consider normal gearboxes, gearboxes containing scratched gears, and gearboxes containing toothless gears, both unloaded and under load, with several rotation frequencies. By applying detrended-fluctuation analysis (DFA), a mathematical tool introduced to study fractal properties of time series, we are able to distinguish the signals with respect to their working conditions. For each signal, DFA involves performing a linear fit to the data inside intervals of a certain size, and evaluating the corresponding fluctuations detrended by the local fit. Repeating this procedure for many interval sizes yields a curve of the average fluctuation as a function of size. From the curves, we define vectors whose components correspond to the average fluctuation associated with suitably chosen interval sizes. We finally apply principal component analysis to the set of all vectors, obtaining very good clustering of the transformed vectors according to the different working conditions, with a performance comparable to that obtained from Fourier analysis, especially for gears working under load.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号