首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 31 毫秒
1.
通过测试水泥浆体的凝结时间、抗压强度、电阻率,同时结合水化产物分析及热力学模拟,研究了不同掺量钢渣粉对硫铝酸盐水泥水化行为的影响规律。结果表明,随着钢渣粉质量掺量的增大,初凝时间呈先延长后缩短的趋势,且在掺量为20%时达到最大值。在28 d龄期内,掺入钢渣粉的水泥硬化浆体抗压强度均小于未掺入钢渣粉的硬化浆体,但在龄期达到60 d和90 d时,掺入40%钢渣粉试样的抗压强度均大于未掺入钢渣粉的试样。钢渣粉与硫铝酸盐水泥复合浆体的电阻率在水化初始阶段随着钢渣粉掺量的增大而增大,在水化后期(约3 h后)则随钢渣粉掺量的增大而减小。在1 d龄期内,钢渣粉掺量为40%的试样中的钢渣粉发生了水化反应,使得水泥浆体在减速期的水化速率最大。由热力学模拟结果可知:在钢渣粉掺量为40%的试样中,C2S在10 h后开始进行水化反应,C2ASH8则在168 h后开始生成;当钢渣掺量大于15%时,随着钢渣粉掺量的增大,钙矾石和铝胶的生成量逐渐减少,C2ASH8的生成量逐渐增多。  相似文献   

2.
师伟  龚泽相  刘开强  马疆  王军  代红  邓林 《硅酸盐通报》2023,(10):3695-3702
针对CO2易腐蚀硅酸盐水泥石、破坏水泥石结构完整性、诱发层间封隔失效等问题,本文利用矿渣改性铝酸钙水泥,研究了铝酸钙水泥-矿渣体系在60、80、100、120℃和纯CO2条件下的抗压强度变化规律,并采用X射线衍射仪、热重分析仪和扫描电子显微镜测试了CO2腐蚀对铝酸钙水泥-矿渣体系水化产物及微观结构的影响。结果表明:与纯铝酸钙水泥石相比,矿渣使铝酸钙水泥石水化产物转变为C2ASH8,大幅提高了水泥石早期抗压强度。当铝酸钙水泥与矿渣质量比为5∶5时,60℃养护14 d的铝酸钙水泥抗压强度提高了215.4%。经CO2腐蚀后,铝酸钙水泥-矿渣体系水化产物由C2ASH8转变为C2AS,并有CaCO3生成,腐蚀层的致密程度增加,相同温度下水泥石的抗压强度随腐蚀时间增加而增大。  相似文献   

3.
蒋卓  雷学文  廖宜顺  廖国胜 《硅酸盐通报》2016,35(12):4088-4092
研究了粉煤灰(FA)及其掺量对硫铝酸盐水泥(CSA)浆体的凝结时间、抗压强度和化学收缩的影响规律,并通过XRD、SEM等方法对72 h龄期时的水化产物进行分析.结果表明,粉煤灰缩短了硫铝酸盐水泥的凝结时间,当粉煤灰掺量为40%时,初凝时间和终凝时间分别缩短了76 min和94 min;掺入粉煤灰使得硫铝酸盐水泥的抗压强度降低,但在28 d龄期时,粉煤灰掺量为20%的硫铝酸盐水泥复合浆体的抗压强度仅略微降低;在硫铝酸盐水泥体系中掺入粉煤灰时,其浆体化学收缩随着粉煤灰掺量的增加逐渐减小,当粉煤灰掺量为20%和40%时,72 h龄期时的化学收缩值分别为0.138 mL/g和0.088 mL/g,较未掺粉煤灰时分别降低了26%和49%;微观分析表明,掺入粉煤灰后,72 h龄期时的水化产物主要是钙矾石和水化硅酸钙凝胶,并未发现氢氧化钙晶体.  相似文献   

4.
采用板状刚玉颗粒和细粉、α-Al2O3微粉、碳酸钙微粉、铝酸钙水泥(CAC)等原料制备了刚玉质浇注料,研究了20℃下碳酸钙微粉对CAC水化速率、水化产物的相组成和显微结构的影响,同时也探究了碳酸钙微粉加入量(0~1.5%,w)对CAC结合刚玉质浇注料养护过程中强度的影响。结果表明:在20℃下,未加入碳酸钙微粉时,CAC水化速率较慢,水化产物主要为针柱状的CAH10;加入碳酸钙微粉后,CAC水化速率明显提升,且其主要的水化产物从针柱状的CAH10转变成片状的C4ACH11。碳酸钙微粉的引入加速了CAC的水化,使得水化产物数量增多,CAC结合浇注料的养护强度显著提升。  相似文献   

5.
研究了海水环境下掺入硅灰、粉煤灰、矿渣对硫铝酸盐水泥抗压强度、化学收缩和水化产物的影响规律.结果表明:当硅灰的掺量为2.5%时,水泥浆体的抗压强度比空白组高.矿渣掺量为10%的水泥浆体28 d抗压强度明显超过掺入硅灰和粉煤灰时的强度,60 d强度高于空白组.掺入2.5%硅灰后,水泥浆体的化学收缩增大;在水化早期,粉煤灰和矿渣的火山灰活性很低,导致水泥浆体的化学收缩降低.掺入10%硅灰加快了硫铝酸盐水泥3 d水化反应,钙矾石生成量增多,水泥浆体早期强度比掺其它掺合料有所提高,但体积过快膨胀会破坏其内部结构,对水泥浆体的强度发展不利.  相似文献   

6.
为研究单硫型水化硫铝酸钙(AFm)和水化铝酸钙(C3AH6)的Cl固结能力和机理,通过人工合成的方法采用C3A制备了高纯AFm与C3AH6,并研究了内掺、外渗Cl条件下2种物质固结Cl后的产物类型、微观形貌、Cl固结量和固结率。结果表明:C3AH6对内掺Cl的固结能力(最高可达75%)远高于AFm(稳定约为17%),该差异在内掺Cl含量相对较低的情况下尤为显著;对比AFm,Cl-与C3AH6的反应更迅速且更为彻底;C3AH6的固氯产物一致为Friedel盐,AFm则根据Cl-浓度及其不同引入方式分为Hc、Kuzel盐、Friedel盐以及高硫型水化硫铝酸钙(Aft...  相似文献   

7.
研究了乙烯-醋酸乙烯酯(EVA)对硫铝酸盐水泥(CSA)净浆抗压强度、凝结时间、干燥收缩、质量损失及浆体内部温度的影响规律,并通过XRD、FTIR、SEM及EDS等测试手段对6 h、28 d龄期时的水化产物及微观结构进行分析。结果表明:掺入EVA后CSA净浆的凝结时间显著缩短,6 h的抗压强度升高,而1 d、3 d、28 d的抗压强度降低;CSA净浆的干燥收缩和质量损失率随着EVA掺量的增加逐渐减小;EVA的掺入提高了CSA净浆内部温度曲线的峰值,加快了峰值出现的时间。微观分析表明:EVA对CSA净浆6 h的水化具有促进作用,使其生成了更多的钙矾石,而对其28 d的水化具有抑制作用,水化产物有所减少。  相似文献   

8.
掺入矿物掺合料是改善硫铝酸盐水泥(CSA)混凝土凝结硬化性能和降低生产成本的主要技术途径之一。研究了水胶比为0.4时,单掺超细矿渣粉(UFS)、偏高岭土(MK)与复掺超细矿渣粉、偏高岭土对硫铝酸盐水泥凝结时间、流动度、电阻率、抗压强度的影响,并对其1 d、28 d龄期时的水化产物进行XRD半定量分析。结果表明,单掺和复掺缩短了水泥浆体的凝结时间,但单掺偏高岭土时的缩短效果更明显,且水泥浆体的流动度随着超细矿渣粉和偏高岭土掺量的增加而减小。掺入超细矿渣粉、偏高岭土缩短了水泥浆体电阻率变化速率曲线峰值出现的时间,峰值大小与掺量成递减关系。当掺量从0%(质量分数,下同)增大到20%时,单掺超细矿渣粉试样的28 d抗压强度减小了24.7%,单掺偏高岭土试样的28 d抗压强度减小了17.7%,两者复掺试样的28 d抗压强度减小了17.3%。超细矿渣粉和偏高岭土对水泥水化产物没有明显影响,但促进了硅酸二钙(β-C2S)的早期水化。  相似文献   

9.
为解决弱碱单独激发碱矿渣胶凝材料(AASM)时存在的力学性能弱、矿渣反应程度低等问题,缓解AASM的操作危害性,本文采用Na2SiO3/Na2CO3复合激发矿渣,研究了复合激发剂组成对AASM凝结时间、抗压强度、水化产物及自收缩的影响,并评估了AASM的环境效益。结果表明:随着Na2CO3碱当量的增加,AASM缓凝效果较为明显,抗压强度也有所降低,但抗压强度的降低幅度随龄期增大而减小。通过加入Na2CO3,AASM水化产物种类增多,C-(A)-S-H的峰值强度随Na2CO3碱当量占比的增加呈现出先增加后降低的趋势,因而解释了AASM浆体自收缩的变化。另外,由CO2排放指数可以看出,Na2SiO3/Na2CO3复合激发矿渣较Na2SiO3单独激发更为清洁,环境效益显著。  相似文献   

10.
稠油热采常使用具有早强和耐高温特性的铝酸钙特种水泥完成固井作业,为保证固井安全和采油效率,需明确早期水热养护对水泥硬化体结构稳定性的影响。本文研究了20、50、80℃下水泥的强度发展、矿物相组成和微观结构。结果表明,水热养护过程中铝酸钙水泥中的钙铝黄长石、CAH10和C2AH8等主要矿物相逐步转变为胶结性差的颗粒状水榴石,导致硬化体结构疏松多孔,进而引发硬化体抗压强度衰退。掺入粉煤灰和矿渣无法有效抑制晶型转变和结构破坏,但六偏磷酸钠改性可使矿物相保持结构稳定性,六偏磷酸钠溶出的Na+、HPO-4与铝酸钙水泥溶出的Ca2+、[AlO4]5-反应生成水化磷铝酸钠钙(N-C-A-P-H)凝胶相产物,进一步提高了硬化体的致密度和胶结特性。  相似文献   

11.
研究了沸石粉对硫铝酸盐水泥浆体流动度、凝结时间和抗压强度的影响规律,并通过自收缩、电阻率和XRD测试分析了沸石粉在硫铝酸盐水泥水化行为中的作用机理。结果表明,掺入沸石粉后水泥浆体的流动度明显降低,凝结时间显著延长,且延长时间随掺量的增大呈先增大后减小的趋势。当沸石粉掺量为5%~15%(质量分数)时,硬化水泥浆体的1 d、3 d、7 d抗压强度均有显著提高;沸石粉掺量为10%时,水泥浆体3 d、7 d、28 d的强度增长幅度最大,和空白组相比,分别增长了21.6%、13.9%和5.4%。掺入沸石粉后水泥浆体的24 h电阻率显著增大,硬化浆体的7 d自收缩减小,且在相同龄期时,硬化浆体的自收缩随沸石粉掺量的增大而减小。XRD分析显示沸石粉的掺入能有效促进硫铝酸盐水泥的水化,有利于1 d、3 d和28 d龄期内钙矾石的形成。  相似文献   

12.
Mixtures of C12A7 and ground granulated blastfurnace slag develop high early strength and produce a fast setting cement. At 50°C the strength of the 1:1 mixture does not show any reduction at least up to 60 days although the ‘conversion’ of the initial calcium aluminate hydrates to the ‘cubic’ C3AH6 takes place. The hydration chemistry of these cementive mixtures has been studied by conduction calorimetry and X-ray diffraction. It appears that the formation of the compound C2ASH8 may be related to the good strength properties of these cements at higher than ambient temperatures.  相似文献   

13.
A characteristic retardation of the hydration of C3A is found in pastes C3S+C3A+CaSO4.2aq+H2O of weight ratios 1:3:z:4 at certain values of z, when sulphate concentration becomes insufficient for monosulphate formation. This retardation is ascribed to precipitation of amorphous Al(OH)3, when C3A dissolves in a limited amount of the aqueous phase shielded from the rest by C4AH13 or C4AH19. Evidence for the conversion of C3AH6 into C4AHn in supersaturated Ca(OH)2 solution is found.  相似文献   

14.
研究了粉煤灰掺量分别为0、20%和40%,水胶比为0.4的水泥浆体的抗压强度、电阻率、化学收缩以及水化产物的变化规律.电阻率采用无电极电阻率法进行测试,化学收缩采用ASTM C1608-12规定的膨胀测定法进行测试.结果表明,在250 d龄期时,粉煤灰掺量为20%的硬化水泥浆体抗压强度仅比空白组低5%;当粉煤灰掺量增大时,水泥浆体在3 d龄期时的强度、电阻率和化学收缩均减小,抗压强度与电阻率之间具有很好的线性关系.XRD及热重分析表明,随着粉煤灰掺量增加,水化硅酸钙含量减少,在3 d龄期时水化产物中出现了钙矾石.  相似文献   

15.
The hydration characteristics of calcium monoaluminate were studied using an effective water/aluminate ratio of 0.15 at 20° or 80°C, from a few minutes of two months. The material hydrated at 80°C shows a large shrinkage while at the lower temperature a continuous expansion occurs. The product at 80°C shows a much higher strength than that hydrated at 20°C. The main initial hydration products are 2Ca0, Aℓ203, 8H20 and alumina gel. Microcracks are developed in the products hydrated at 20°C while at the higher temperature a very compact mass results. The data indicate that it is possible to obtain a durable high alumina cement by using a low water/cement ratio and hydrating at higher temperatures, and under these conditions C3AH3---C3AH6 bond is favoured.  相似文献   

16.
通过凝结时间、抗压强度和电阻率等分析手段,研究了Ca(OH)2对硫铝酸盐水泥-粉煤灰复合胶凝材料水化过程的影响.结果表明,掺入Ca(OH)2明显缩短了硫铝酸盐水泥-粉煤灰复合胶凝材料的凝结时间;当Ca(OH)2掺量为0.5%时,初凝时间最短,1 d、28 d强度均明显提高;当Ca(OH)2的掺量为2%时,28 d强度相比空白样提高了61.9%;掺入Ca(OH)2后,硫铝酸盐水泥-粉煤灰复合胶凝材料的1 d电阻率减小,随着Ca(OH)2掺量增大,电阻率逐渐减小,电阻率变化率极大值提前,说明Ca(OH)2加快了该复合胶凝材料的早期水化进程.XRD分析表明,掺入Ca(OH)2后,水化1 d时钙矾石的生成量增多,消耗无水硫铝酸钙的量增多;水化28 d时钙矾石的生成量相对变化较小,但强度明显增大,粉煤灰对硫铝酸盐水泥强度的贡献较为明显.  相似文献   

17.
苏美娟  王子明  赵攀  刘晓 《硅酸盐通报》2022,41(12):4172-4179
碱性和无碱速凝剂掺入水泥后的水化机理不同,导致应用性能存在明显差异。本文通过测试凝结时间和砂浆抗压强度等宏观性能对比了两种速凝剂的应用性能,并通过水化放热分析、XRD定量分析、热重分析和SEM微观形貌观察等微观方法综合分析了两者的早期水化历程。结果表明:碱性速凝剂加入水泥后,[Al(OH)4]-加快了水泥中石膏的消耗速度,水化初期生成大量钙矾石(AFt),促进了硅酸三钙(C3S)矿物的水化,缩短了水泥浆体的凝结时间并提高了砂浆的早期抗压强度,但石膏的加速消耗也使得单硫型水化硫铝酸钙(AFm)和水化铝酸钙(C-A-H)等水化产物提前生成,影响了水泥基材料的后期抗压强度发展;无碱速凝剂加入水泥后,[Al(OH)4]-和SO2-4在液相中生成了大量AFt,促进了铝酸三钙(C3A)和C3S矿物的水化,影响了氢氧化钙(CH)的结晶析出。值得注意的是,SO2-4不仅促进了C3A生成AFt的过程,也延缓了水泥中石膏的消耗及AFm和C-A-H等产物的生成,因此无碱速凝剂的加入除了明显提高早期抗压强度外,后期28 d抗压强度也不受影响。  相似文献   

18.
The use of temperatures higher than 30°C during the hydration of 1:3 high alumina cement mortar leads to the formation of the cubic hydrate C3AH6, hence avoiding the conversion of CAH10 to C3AH6. The subsequent carbonation of C3AH6 with CO2 and thermal treatment leads to the formation of stable carbonated phases. The optimum hydration ages are the minimum necessary times to get C3AH6: 3 hours at 80°C, 6 hours at 60°C. The product is in a state we call “semiplastic” in which the next structural transformation - carbonation - occurs more easily than when the specimens have a rigid structure. The effect of a super-water-reducing admixture has also been studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号