首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对由伺服参数不匹配及外部扰动引起的双轴运动中不同步现象,提出将给定进给速度比下两轴间的同步控制问题转换为二维轮廓控制问题。通过几何分析获得同步误差与轮廓误差之间的关系,并基于等效切线轮廓误差估计模型,提出一种新型双轴交叉耦合同步控制策略。在自主开发的直线型双轴运动控制实验平台上进行同步控制实验,实验结果表明:无论是等速同步运动还是非等速同步运动,在伺服增益不匹配及摩擦扰动影响下,所提出的新型交叉耦合同步控制策略能有效减少同步误差的产生。  相似文献   

2.
以双端驱动轴承试验机为实验平台,对双电动机同步性能进行了研究。建立了基于单轴控制系统模型的双电动机同步控制系统,推导了双电动机电流同步误差传递函数的数学模型,并分析了在典型输入信号下的电流同步误差。在交叉耦合控制的基础上,与模糊PID控制相结合,设计了模糊PID交叉耦合控制器。在LabVIEW软件中搭建了模糊PID交叉耦合控制器的仿真模型,并在轴承试验机上进行验证。仿真和实验结果表明,该控制器在阶跃、斜坡等典型输入情况下可以有效地减小系统同步误差,并且有良好的抗扰动性能和自适应能力,可使轴承试验机系统获得良好的控制效果。  相似文献   

3.
张鑫  张靓 《机械科学与技术》2020,39(8):1184-1190
为了对机械臂各关节间进行高精度同步控制,以提高运动轨迹跟踪精度,针对机械臂单关节,提出了分数阶微积分与滑模控制相结合的位置跟踪控制策略,考虑机械臂各关节之间存在的耦合关系,提出了分数阶滑模交叉耦合控制策略。并对所提的控制策略的渐进稳定性进行了理论证明。以二关节机械臂为研究对象进行了实验验证,结果表明:利用本文提出的位置跟踪控制策略使二关节机械臂角位移调整时间分别为0.53 s、0.58 s,优于传统滑模控制策略的1.31 s、1.24 s,其位置误差的均方根误差相比传统滑模控制策略分别减小了1.6×10-4、6.51×10-4。本文所设计的分数阶滑模交叉耦合控制器使机械臂得到的输出响应的上升时间和稳定时间优于PD交叉耦合控制策略和滑模交叉耦合控制策略,且同步误差的均方根误差分别为0.022 5、0.031 6,优于PD交叉耦合的0.133、0.926和滑模交叉耦合的0.057 3、0.052 3。实验结果说明了本文所提出控制方法的有效性。  相似文献   

4.
双电动机共同驱动的龙门结构越来越多地应用于高精度数控机床中。传统的主从式控制方式由于主动轴不考虑从动轴的干扰情况,控制精度不是很高。本文提出了在交叉耦合控制方式下采用电流环补偿的方案并建立了双轴控制模型。设计了利用比例修正器调节电流环增益的控制方法。同时利用了专家PID控制算法对同步误差进行调整。实验表明,该方法有效提高了同步轴的响应速度,具有鲁棒性强、同步误差小的优点。  相似文献   

5.
针对双轴直驱平台伺服系统中存在同步进给的问题,提出一种交叉耦合迭代学习控制器与自适应加加速度控制器相结合的新型同步控制方法。首先,构建同步误差,利用交叉耦合控制器解决双轴的耦合问题;设计自适应PD型学习律减小同步误差,实现双轴协调同步。采用模型前馈控制补偿系统的参数不确定性,提高系统的响应速度。自适应加加速度控制器抑制系统中外部扰动、摩擦力等不确定性因素,实现系统的渐近跟踪控制。加加速度积分后形成反馈控制律,保证了控制信号的稳定性和连续性。设计自适应更新律,使鲁棒增益实现指数收敛并削弱测量噪声对系统的影响,增强系统的鲁棒性。系统实验结果表明,该方法能够明显地提高系统的同步性能,改善双轴直驱平台伺服系统的控制精度。  相似文献   

6.
曲轴非圆磨削通常采用补偿单轴伺服跟踪误差的方法来提高连杆颈轮廓加工精度,但磨削运动中大惯量砂轮架会严重影响伺服系统的高速响应性,导致单轴伺服跟踪误差补偿轮廓误差效果不理想.因此引入双轴联动交叉耦合控制思想,首先工件旋转轴与砂轮架直线轴的联动运动被近似为两根直线轴联动,并建立曲轴非圆磨削轮廓误差模型,在此模型基础上设计交叉耦合控制系统.为了弥补这种近似对非线性轨迹控制带来的不足,研究分段变参数的交叉耦合控制策略,并以工件轮廓误差最小为目标,采用差分进化(Differential evolution,DE)算法逐段对控制器参数进行优化.仿真实例结合试验表明:在基于DE算法优化的变参数交叉耦合控制下,曲轴非圆磨削理论轮廓精度较普通比例微分和积分控制或交叉耦合控制有所提高.  相似文献   

7.
数控机床双轴驱动系统在工作过程中,因工作台与滑台的质心不重合等原因将导致两根滚珠丝杠的位置或转速出现误差,严重影响机床的加工精度。以两根驱动轴的同步控制精度作为研究目的,把神经网络与传统PID控制相结合,提出了一种基于神经元PID的控制策略,同时采用交叉耦合方法和有监督Delta学习规则,按差值最小准则实时修正神经元的连接权重,以实现PID控制参数的在线整定。仿真和测试结果表明,该方法能有效减小同步误差,提高工件加工精度。  相似文献   

8.
为实现龙门双轴运动的同步,提出采用时域响应分析方法,从同步运动系统的各轴伺服响应差异入手分析同步误差的产生原因,分别推导出位置斜坡和位置正弦参考命令下龙门双轴同步误差的理论计算公式,得到两轴伺服增益系数、积分时间常数及参考命令参数与同步误差的定量关系。由MATLAB/Simulink建模仿真分析可知:在各参考输入下推导的同步误差理论计算公式正确;获得两轴伺服增益系数对同步误差的影响关系,即减小两轴伺服增益不匹配程度、增大两轴伺服增益系数能抑制同步误差。  相似文献   

9.
陈晶  陈冰冰  黄伟权  龙静 《机电工程》2013,(10):1222-1225
针对新型伺服锻压机存在电机精确同步的瓶颈问题,引入了双电机交叉耦合同步控制方案.该方案将主、从电机的电流进行比较,得到了一个差值作为从电机的附加反馈信号.从电机根据这一附加反馈信号对自身的速度进行了动态调整,从而获得了较好的同步精度.先从理论角度对比分析了主令双电机同步控制方案和交叉耦合双电机同步控制方案两者的控制效果以及存在的问题.接着分别使用主令双电机同步控制方案和交叉耦合双电机同步控制方案控制锻压机执行相同的工艺曲线,通过实验对比分析了两种同步方案下的耦合误差和两电机的扭矩曲线.研究结果表明,在紧耦合的双电机系统中,交叉耦合双电机同步控制方案能满足系统的位置和扭矩同步要求,两电机的同步误差在0.35°以内.  相似文献   

10.
为提高瓦楞纸板生产效率、降低废品率,在分析输送装置及工艺要求的基础上,对瓦楞纸板输送过程进行数学建模,并设计了一种基于交叉耦合误差的滑模同步控制器,能够有效减少系统的跟踪误差和同步误差,实现了输送装置的高精度控制。运用Lyapunov方法分析了系统的稳定性,MATLAB仿真结果表明,与传统滑模控制器相比,所设计控制器具有更强的抗干扰性和跟踪精度。  相似文献   

11.
龙亿  杨晓钧  李兵 《中国机械工程》2013,24(20):2730-2735
基于Kane方程,建立了平面二自由度冗余驱动并联机构的动力学模型。基于轨迹轮廓误差,定义了机构的同步误差及滑模面,将动力学方程线性化,设计了自适应滑模同步控制器并对机构进行了稳定性分析。通过MATLAB仿真计算,并与计算力矩法进行比较发现,自适应滑模同步控制法优于计算力矩法,能够很好地实现轨迹跟踪。  相似文献   

12.
针对双轴驱动系统中由两轴伺服增益不匹配造成的运动不同步问题,从单轴稳态误差分析入手,构建单轴跟踪误差与两轴同步误差的关系。推导出参考位置为斜坡信号时同步误差的理论计算公式,确定两轴伺服增益系数及进给速度与同步误差间的定量关系;基于推导所得公式,提出将速度影响因子引入交叉耦合控制器中,并给出两种同步误差补偿策略(策略1和策略2)。通过仿真与实验验证了所推导同步误差理论计算公式的正确性;所提出的两种同步误差补偿策略均能有效减小因两轴伺服增益系数不匹配而产生的同步误差,且补偿后单轴系统的动态响应性能不会受到影响;与采用补偿策略1相比,采用补偿策略2后所获得的同步误差曲线更为平稳。  相似文献   

13.
四轮毂电机交叉耦合同步控制策略研究   总被引:1,自引:0,他引:1  
针对四轮毂电机独立驱动系统中各轮毂电机之间存在速度、位置的相互约束关系,需要设计相应的控制策略,对四台轮毂电机之间的运行同步进行控制。利用交叉耦合思想建立各轮毂电机的同步误差模型,确立了各轮毂电机之间的耦合关系;通过滑模控制理论设计轮毂电机的同步控制算法。利用MATLAB对四个轮毂电机在有干扰和无干扰时的同步性进行仿真分析,分析结果表明,在四轮毂电机同步性控制中,交叉耦合控制策略同步性好,抗干扰能力强。  相似文献   

14.
为提高直角坐标机器人控制精度,结合迭代学习控制和交叉耦合控制设计了一种轮廓误差补偿算法。在单轴数学模型的基础上,搭建了直角坐标机器人轮廓误差模型。根据不同控制方法的特点,结合反馈控制、单轴迭代学习控制、双轴交叉耦合控制和轮廓误差迭代学习控制设计了一种控制器。直角坐标机器人的控制系统以ARM和FPGA为核心,其中,ARM主要用于传感器信号采集、上位机通信、故障检测和机器人运动轨迹规划等;FPGA则可实现伺服电机的控制。实验结果表明:轮廓误差平均值、最大值和标准偏差均大幅降低;迭代学习交叉耦合控制能够大幅降低轮廓误差,有效提高直角坐标机器人运动精度。  相似文献   

15.
为了有效地减小光纤透镜的研磨抛光轮廓误差,设计一种两轴联动的交叉耦合轮廓控制器,并且针对光纤透镜研磨抛光机床的运动特点,给出了交叉耦合轮廓误差模型.然后利用Matlab软件对该交叉耦合轮廓控制的效果进行了仿真研究与分析.仿真结果表明,利用该控制器能使系统轮廓误差从0.075 μm减小到0.03 μm,但由于加入了交叉耦合器的补偿量,Z轴的跟随误差也从0.05 μm增大到0.07 μm.同时也表明两轴联动的交叉耦合控制系统远远优于单轴PID控制系统.  相似文献   

16.
为提高永磁同步直线电机驱动的进给系统轮廓轨迹跟踪精度和系统的动态性能,提出了一种显式模型预测交叉耦合控制方法(Explicit model predictive cross-coupled control, EMPCCC)。该方法结合显式预测控制原理与交叉耦合控制思想,对单轴电流和速度信号进行多步预测,将轮廓误差作为反馈量来修正预测控制的给定轨迹,达到轮廓误差预测控制的目的。基于MATLAB/Simulink搭建仿真模型,结果表明,所提EMPCCC方法能快速实现不同转速波形的无超调跟踪控制,且可以实时估计并补偿轮廓误差,提升不同轨迹的轮廓精度。  相似文献   

17.
非对称液压缸同步控制系统在大型、重型工业设备中应用广泛,其同步性能和响应速度直接影响设备的稳定运行。为了进一步优化对称阀控非对称液压缸同步系统,对阀控非对称液压缸进行建模分析。基于非对称液压缸特性及负载变化范围大的特点,提出了模糊补偿控制方法来提高液压缸的响应速度;针对液压缸的同步问题,设计了交叉耦合的前馈补偿控制方式来缩小同步误差。利用AMESim搭建液压回路系统模型作为控制对象,并联合Simulink搭建控制系统进行仿真。仿真结果表明:相比于改进前,在负载不断变化且具有偏载的情况下,含双重补偿的同步控制可以明显减小液压同步系统的跟踪误差与同步误差。  相似文献   

18.
为研究对称式三辊卷板机上辊两侧液压缸的同步控制问题,在原有单缸位置控制试验台的基础上,搭建了同步控制试验台。首先分析了试验台结构并进行了数学建模,然后基于建立的模型结合指数趋近律,设计了对系统参数变化及外干扰具有不变性的滑模控制器,最后在试验台上进行了同步控制试验,并对比分析了PID同步控制方法和滑模PID同步控制方法对系统的影响。结果表明,滑模控制有效提高了PID控制的同步精度,使得两缸动态误差控制在3mm/180mm之内,最终的位置误差控制在0.4mm/180mm之内。  相似文献   

19.
针对数控机床可控励磁直线同步电动机磁悬浮系统的强非线性、外部扰动不确定性的问题,设计基于RBF神经网络直接自适应控制器.通过分析磁悬浮系统的运行机理,推导运动方程及悬浮力方程,进而建立系统的状态方程;用悬浮高度的跟踪误差和误差的变化量构造误差函数,设计直接自适应理想控制器并采用RBF神经网络对其进行逼近;设计自适应律来估计神经网络理想权值,对误差函数的变化率构造二次型Lyapunov函数,利用Lyapunov稳定性理论来证明系统稳定;通过Matlab对控制系统进行计算机仿真,结果表明该方法设计的控制器与自适应模糊滑模控制器和PID控制器相比,空载启动时调节时间减少了23.5%,突加负载时动态降落减少了64.7%,恢复时间减少了38.2%,具有稳态误差小,调节时间和恢复时间短,抗扰性较强的优点,能有效提高磁悬浮系统的控制性能.  相似文献   

20.
针对多电机同步控制中传统环形耦合PID控制存在抗扰动性不强、扰动下同步误差较大等问题,提出了一种带前馈控制的滑模变结构多电机相邻耦合控制策略,建立了3台永磁同步电动机同步控制仿真模型,通过Lyapunov稳定性理论证明了滑模控制算法的稳定性,并进行了交变负载、突变负载实验。仿真分析和实验结果表明,该控制策略相比传统环形耦合PID控制、相邻耦合PID控制具有更高的同步精度和更好的抗扰动性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号