首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A three dimensional (3D) dumbbell-like nanostructure composed by interconnected fullerenes and nanotubes with Lithium decoration and boron-doping (37Li@C139B31) has been proposed in virtue of density functional theory (DFT) and first-principles molecular dynamics (MD) simulations which shows excellent geometric and thermal stability. First-principles calculations are performed to investigate the hydrogen adsorption onto the 37Li@C139B31. The results indicate that B substitution can improve the metal binding and the average binding energy of 37 adsorbed Li atoms on the C139B31 (2.79 eV) is higher than the cohesive energy of bulk Li (1.63 eV) suppressing the clustering. Meanwhile, the H2 storage gravimetric density of 178H2@37Li@C139B31 reaches up to 15.9 wt% higher than the year 2020 target from the US department of energy (DOE). The average adsorption energy of H2 molecules falls in a desirable range of 0.18–0.27 eV. Moreover, grand canonical ensemble Monte Carlo (GCMC) simulations reveal that at room temperature the hydrogen gravimetric density (HGD) adsorbed on 37Li@C139B31 reaches up to 11.6 wt% at 100 bars higher than the DOE 2020 target. Our multiscale simulations indicate that our proposed nanostructure provides a promising medium for hydrogen storage.  相似文献   

2.
Hydrogen storage properties of Li-decorated graphene oxides containing epoxy and hydroxyl groups are studied by using density functional theory. The Li atoms form Li4O/Li3OH clusters and are anchored strongly on the graphene surface with binding energies of −3.20 and −2.84 eV. The clusters transfer electrons to the graphene substrate, and the Li atoms exist as Li+ cations with strong adsorption ability for H2 molecules. Each Li atom can adsorb at least 2H2 molecules with adsorption energies greater than −0.20 eV/H2. The hydrogen storage properties of Li-decorated graphene at different oxidation degrees are studied. The computations show that the adsorption energy of H2 is −0.22 eV/H2 and the hydrogen storage capacity is 6.04 wt% at the oxidation ratio O/C = 1/16. When the O/C ratio is 1:8, the storage capacity reaches 10.26 wt% and the adsorption energy is −0.15 eV/H2. These results suggest that reversible hydrogen storage with high recycling capacities at ambient temperature can be realized through light-metal decoration on reduced graphene oxides.  相似文献   

3.
Because of the increasing demand for energy sources, searching for reversible and high-capacity hydrogen storage materials plays a vital role in the extensively utilizing of hydrogen as a clean energy source. In this study, dispersion-corrected density functional theory (DFT-D3) calculations are utilized to examine the possibility of storing H2 molecules on Li, Na, and K alkali metals decorated C6O6Li6 cluster. To evaluate H2 adsorption capability, the adsorption energies, electron density difference iso-surfaces, and charge-transfers are calculated and discussed. The results indicate that a hydrogen molecule is physisorbed on the Li@C6O6Li6, Na@C6O6Li6, and K@C6O6Li6 with average adsorption energies of −0.264, −0.150, and −0.109 eV, respectively. Double-sided alkali metal atoms decoration can lead to the maximum gravimetric density of 15.68, 14.49, and 13.79 wt% for 2Li@C6O6Li6–8H2, 2Na@C6O6Li6–10H2, and 2K@C6O6Li6–12H2 complexes, respectively. Finally, desorption temperatures reveal that the systems can operate as reversible hydrogen storage materials.  相似文献   

4.
Motivated by novel graphyne-like carbon nanostructure C68-GY, spin-polarized DFT calculations with dispersion-correction were performed to investigate the hydrogen adsorption capacity of Li decorated C68-GY nanosheet. The binding energy between Li and C68-GY was larger than the cohesive energy of bulk metal, indicating Li atoms would prefer to separately attached on C68-GY. The ab initio molecular dynamics simulation has been performed to confirm the stability of Li/C complex. When five Li atoms decorated on C68-GY, 14H2 molecules were captured. The maximum hydrogen storage density was 8.04 wt% with an average hydrogen adsorption energy of −0.227 eV per H2. The positively charged Li atoms aroused electrostatic field and induced the polarization of H2. It was notable to observe strong hybridization between the main peak of H-1s orbitals with Li below Fermi level, which was responsible for the enhancement of hydrogen binding energy, indicating its potential application on hydrogen storage.  相似文献   

5.
In this work, adsorption of H2 molecules on heteroborospherene C2v C4B32 decorated by alkali atoms (Li) is studied by density functional theory calculations. The interaction between Li atoms and C4B32 is found to be strong, so that it prevents agglomeration of the former. An introduced hydrogen molecule tilts toward the Li atoms and is stably adsorbed on C4B32. It is obtained that Li4C4B32 can store up to 12H2 molecules with hydrogen uptake capacity of 5.425 wt% and average adsorption energy of ?0.240 eV per H2. Dynamics simulation results show that 6H2 molecules can be successfully released at 300 K. Obtained results demonstrate that Li decorated C4B32 is a promising material for reversible hydrogen storage.  相似文献   

6.
Two-dimensional (2D) materials can be regarded as potential hydrogen storage candidates because of their splendid chemical stability and high specific surface area. Recently, a new dumbbell-like carbon nitride (C4N) monolayer with orbital hybridization of sp3 is reported. Motivated from the above exploration, the hydrogen adsorption properties of Li-decorated C4N monolayer are comprehensively investigated via first principles calculations based on the density functional theory (DFT). It is found that the Dirac points and Dirac cones exists in the Brillouin zone (BZ) from the calculated electronic structure and indicates the C4N can be used as an excellent topological material. Also, the calculated phonon spectra demonstrate that the C4N monolayer owns a strong stability. Moreover, the calculated binding energy of decorated Li atom is bigger than its cohesive energy and results in Li atoms disperse over the surface of C4N monolayer uniformly without clustering. In addition, the Li8C4N complex can capture up to 24H2 molecules with an optimal hydrogen adsorption energy of −0.281 eV/H2 and achieves the hydrogen storage density of 8.0 wt%. The ab initio molecular dynamics (AIMD) simulations suggest that the H2 molecules can be desorbed quickly at 300 K. This study reveals that Li-decorated C4N monolayer can be served as a promising hydrogen storage material.  相似文献   

7.
The potential application of pristine Be2N6 monolayer and Li-decorated Be2N6 monolayer for hydrogen storage is researched by using periodic DFT calculations. Based on the obtained results, the Be2N6 monolayer gets adsorb up to seven H2 molecules with an average binding energy of 0.099 eV/H2 which is close to the threshold energy of 0.1 eV required for practical applications. Decoration of the Be2N6 monolayer with lithium atom significantly improves the hydrogen storage ability of the desired monolayer compared to that of the pristine Be2N6 monolayer. This can be attributed to the polarization of H2 molecules induced by the charge transfer from Li atoms to the Be2N6 monolayer. Decoration of Be2N6 monolayer with two lithium atoms gives a promising medium that can hold up to eight H2 molecules with average adsorption energy of 0.198 eV/H2 and hydrogen uptake capacities of 12.12 wt%. The obtained hydrogen uptake capacity of 2Li/Be2N6 monolayer is much higher than the target set by the U.S. Department of Energy (5.5 wt% by 2020). Based on the van't Hoff equation, it is inferred that hydrogen desorption can occur at TD = 254 K for 2Li/Be2N6 (8H2) system which is close to ambient conditions. This is a remarkable result indicating important practical applications of 2Li/Be2N6 medium for hydrogen storage purposes.  相似文献   

8.
This research describes the theoretical study of the adsorption of lithium clusters on graphene and the ability to capture hydrogen molecules. The results of the studied structures showed that the [Li1C54H18]+ system is capable of accepting three hydrogen molecules showing adsorption energies of 0.12 eV. On the other hand, it is important to note that in [LinC54H18] n = 2–6 systems, the lithium atoms that do not interact with the graphene surface, they can adsorb up to four hydrogen molecules. The [Li6C54H18]4H2 system presented a higher adsorption energy value of 0.31 eV. Finally, the Li–H2 interactions were characterized by a NBO analysis, which showed that hydrogen atoms are the donors and lithium atoms are the acceptors.  相似文献   

9.
10.
The hydrogen storage capacity of Ti-acetylene (C2H2Ti) and Li-acetylene (C2H2Li) complex has been tested using second order Møller Plesset method with different basis sets. Single Ti(Li) decorated acetylene complex can adsorb maximum of five(four) hydrogen molecules, which corresponds to the gravimetric hydrogen storage capacity of 12(19.65) wt % and it meets the target of 9 wt % by 2015 specified by US Department of Energy. The hydrogen adsorption energies with zero point energy and Gibbs free energy correction show that hydrogen adsorption on C2H2Ti is energetically favourable for a wide range of temperature and that is unfavourable on C2H2Li complex even at a very low temperature. Atom centered density matrix propagation molecular dynamics simulations reveal that four H2 molecules remain adsorbed on C2H2Ti complex at 300 K. Though H2 uptake capacity of C2H2Li complex is higher than that of C2H2Ti complex, the thermochemistry results favour to C2H2Ti complex over C2H2Li complex as a possible hydrogen storage media.  相似文献   

11.
Two-dimensional (2D) carbon-based (C-based) and carbon-nitrogen (C–N) materials have great potential in the energy harvest and storage fields. We investigate a novel carbon biphenylene (C468) consisting of four-, six- and eight-membered rings of sp2 carbon atoms (Fan et al., Science, 372:852-6 (2021)) for hydrogen storage. Using first-principles based Density functional theory calculations, we study the geometrical and electronic properties of C468 and N-doped C468. Lithium (Li) atoms were symmetrically adsorbed on both sides of the substrate, and their adsorption positions were determined. The maximum gravimetric density of hydrogen (H2) adsorbed symmetrically on both sides of Li atom was studied within the scope of physical adsorption process (−0.2 eV/H2 ∼ −0.6 eV/H2). Li-decorated C468 can adsorb 8 upper hydrogen molecules and 8 lower hydrogen molecules, and Li-decorated N-doped C468 can adsorb 9 upper hydrogen molecules and 9 lower hydrogen molecules. The gravimetric densities of Li-decorated C468 and Li-decorated N-doped C468 can reach 9.581 wt% and 10.588 wt%, respectively. Our findings suggest significant insights for using Li-decorated C468 and Li-decorated N-doped C468 as hydrogen storage candidates and effectively expand the application scope of C-based materials and C–N materials.  相似文献   

12.
This study uses first-principles calculations to investigate and compare the hydrogen storage properties of Ti doped benzene (C6H6Ti) and Ti doped borazine (B3N3H6Ti) complexes. C6H6Ti and B3N3H6Ti complex each can adsorb four H2 molecules, but the former has a 0.11 wt% higher H2 uptake capacity than the latter. Ti atoms bind to C6H6 more strongly than B3N3H6. The hydrogen adsorption energies with Gibbs free energy correction for C6H6Ti and B3N3H6Ti complexes are 0.17 and 0.45 eV, respectively, indicating reversible hydrogen adsorption. The hydrogen adsorption properties of C6H6Ti have also been studied after boron (B) and nitrogen (N) atom substitutions. Several B and N substituted structures between C6H6Ti and B3N3H6Ti with different boron and nitrogen concentration and at different positions were considered. Initially, one boron and one nitrogen atom is substituted for two carbon atoms of benzene at three different positions and three different structures are obtained. Seven structures are possible when four carbon atoms of benzene are replaced by two boron and two nitrogen atoms at different positions. The hydrogen storage capacity of the C6H6Ti complex increases as boron and nitrogen atom concentrations increases. The positions of substituted boron and nitrogen atoms have less impact on H2 uptake capacity for the same B and N concentration. The position and concentration of B and N affects the H2 adsorption energy as well as the temperature and pressure range for thermodynamically favorable H2 adsorption. The H2 desorption temperature for all the complexes is found to be higher than 250 K indicates the stronger binding of H2 molecules with these complexes.  相似文献   

13.
To find ideal hydrogen storage media, hydrogen storage performance of Li decorated net-τ has been investigated by first-principles calculations. Maximum 6 Li atoms are adsorbed on net-τ, with the average binding energy of 2.15 eV for per Li atom. Based on 6Li-decorated net-τ, up to twenty H2 molecules are adsorbed, with a high H2 storage capacity of 12.52 wt% and an appropriate adsorption energy of 0.21 eV/H2. Finally, H2 uptake performance is measured by GCMC simulations. Our results suggest that Li-decorated net-τ may be a promising hydrogen storage medium under realistic conditions.  相似文献   

14.
We report a density functional theory calculation dedicated to analyze the behavior of hydrogen adsorption on Yttrium-decorated C48B12. Electron deficient C48B12 is found to promote charge transfer between Y atom and substrate leading to an enhanced local electric field which can significantly improve the hydrogen adsorption. The analysis shows that Y atoms can be individually adsorbed on the pentagonal sites without clustering of the metal atoms, and each Y atom can bind up to six H2. molecules with an average binding energy of −0.46 eV/H2, which is suitable for ambient condition hydrogen storage. The Y atoms are found to trap H2 molecules through well-known “Kubas-type” interaction. Our simulations not only clarify the mechanism of the reaction among C48. B12, Y atoms and H2 molecules, but also predict a promising candidate for hydrogen storage application with high gravimetric density (7.51%).  相似文献   

15.
Based on first-principles calculations, we find Li-decorated benzene complexes are promising materials for high-capacity hydrogen storage. Lithium atoms in the complexes are always positively charged, and each one can bind at most four H2 molecules by a polarization mechanism. Therefore, a hydrogen uptake of 8.6 wt% and 14.8 wt% can be achieved in isolated C6H6–Li and Li–C6H6–Li complexes, respectively. The binding energy in the two cases is 0.22 eV/H2 and 0.29 eV/H2, respectively, suitable for reversible hydrogen storage. Various dimers may form, but the hydrogen storage capacity remains high or uninfluenced. This study provides not only a promising hydrogen storage medium but also comprehensions to other hydrogen storage materials containing six-carbon rings.  相似文献   

16.
The mechanism of hydrogen molecule adsorption on 2D buckled bismuthene (b-Bi) monolayer decorated with alkali metal atoms was studied using density functional theory based first principles calculations. The decorated atoms Li, Na and K exhibited distribution on surface of b-Bi monolayer with increasing binding energy of 2.6 eV, 2.9 eV and 3.6 eV respectively. The adsorption of H2 molecule on the slabs appeared stable which was further improved upon inclusion of van der Waals interactions. The adsorption behaviour of H2 molecules on the decorated slabs is physisorption whereas the slabs were able to bind up to five H2 molecules. The average adsorption energy per H2 molecules are in range of 0.1–0.2 eV which is good for practical applications. The molecular dynamics simulation also confirmed the thermodynamic stabilities of five H2 molecules adsorbed on the decorated slabs. The storage capacity values are found 2.24 wt %, 2.1 wt %, and 2 wt %, for respective cases of Li, Na and K atoms decorated b-Bi. The analysis of the adsorbed cases pointed to electrostatic interaction of Li and H2 molecule. The adsorption energies, binding energies, charge analysis, structural stability, density of states, and hydrogen adsorption percentage specifies that the decorated b-Bi may serve as an efficient hydrogen storage material and could be an effective medium to interact with hydrogen molecules at room temperature.  相似文献   

17.
Searching advanced materials with high capacity and efficient reversibility for hydrogen storage is a key issue for the development of hydrogen energy. In this work, we studied systematically the hydrogen storage properties of the pure C7N6 monolayer using density functional theory methods. Our results demonstrate that H2 molecules are spontaneously adsorbed on the C7N6 monolayer with the average adsorption energy in the range of 0.187–0.202 eV. The interactions between H2 molecules and C7N6 monolayer are of electrostatic nature. The gravimetric and volumetric hydrogen storage capacities of the C7N6 monolayer are found to be 11.1 wt% and 169 g/L, respectively. High hardness and low electrophilicity provides the stabilities of H2–C7N6 systems. The hydrogenation/dehydrogenation (desorption) temperature is predicted to be 239 K. The desorption temperatures and desorption capacity of H2 under practical conditions further reveal that the C7N6 monolayer could operate as reversible hydrogen storage media. Our results thus indicate that the C7N6 monolayer is a promising material with efficient, reversible, and high capacity for H2 storage under realistic conditions.  相似文献   

18.
The H2 adsorption characteristics of Li decorated single-sided and double-sided penta-silicene are predicted via density functional theory (DFT). The orbital hybridization results in Li atom strongly bind onto the surface of the penta-silicene with a large binding energy and it keeps the decorated Li atoms from aggregation. Moreover, Li decorated double-sided penta-silicene can store up to 12H2 molecules with the average hydrogen adsorption energy of ?0.220 eV/H2 and hydrogen uptake capacity of 6.42 wt%, respectively. The ab initio molecular dynamics (AIMD) simulations demonstrate the H2 molecules are released gradually from the substrate material with the increasing simulation time and the calculated desorption temperature TD is 281 K in the suitable operating temperature range. Our explorations confirm that Li decorated penta-silicene can be regarded as a promising hydrogen storage candidate for hydrogen storage applications.  相似文献   

19.
This paper investigates the decoration of superalkali NLi4 on graphene and the hydrogen storage properties by using first principles calculations. The results show that the NLi4 units can be stably anchored on graphene while the Li atoms are strongly bound together in the superalkali clusters. Decoration using the superalkali clusters not only solve the aggregation of metal atoms, it also provide more adsorption sites for hydrogen. Each NLi4 unit can adsorb up to 10 H2 molecules, and the NLi4 decorated graphene can reach a hydrogen storage capacity 10.75 wt% with an average adsorption energy ?0.21 eV/H2. We also compute the zero-point energies and the entropy change upon adsorption based on the harmonic frequencies. After considering the entropy effect, the adsorption strengths fall in the ideal window for reversible hydrogen storage at ambient temperatures. So NLi4 decorated graphene can be promising hydrogen storage material with high reversible storage capacities.  相似文献   

20.
Inspired by the TM−N4 coordination environment in single-atom catalysts, four novel TM-decorated B24N24 (TM = Sc, Ti) fullerenes with six TM−N4 or TM−B4 units are designed. Molecular dynamic simulations confirm that the four TM6B24N24 fullerenes are thermodynamically stable. Their hydrogen storage properties were investigated using density functional theory calculations. Sc/Ti atoms bind to the N4/B4 cavities with an average interaction energy of 6.30–11.96 eV. Hence, the problem of clustering can be avoided. 36H2 could be adsorbed with average hydrogen adsorption energies of 0.18–0.55 eV. The lowest hydrogen desorption temperatures at atmospheric pressure for Sc6B24N24(N4)–36H2, Sc6B24N24(B4)–36H2, Ti6B24N24(N4)–36H2, and Ti6B24N24(B4)–36H2 are 255 K, 318 K, 243 K, and 408 K, respectively. The maximum hydrogen gravimetric densities of the Sc6B24N24 and Ti6B24N24 systems are 7.74 wt% and 7.50 wt%, respectively. Therefore, the novel Sc6B24N24 and Ti6B24N24 could be suitable as potential hydrogen storage materials at ambient temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号