首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrogen storage in clathrate hydrates is a promising approach for industry-scale utilizations. However, extreme operation conditions such as high pressure (about GPa) limit the development. In this work hydrogen hydrate phase equilibrium in addition of methane, tert-butyl alcohol (tBA), trichloromethane (CHCl3) and 1,1-dichloro-1-fluoroethane (HCFC-141 b) are reported at 6 MPa–20 MPa and 274 K–286 K, which including 21 points in total. Mechanism studies using Raman spectroscopy show that tBA and H2O form metastable hydrate cages via hydrogen bonds, then form stable sII hydrates with the help of CH4. Hydrate-based hydrogen storage capacity in 5.6 mol%HCFC-141 b-water mixture could reach 46 V/V (0.36 wt%) at 273 K and 10 MPa. Combing with chemical energy of HCFC-141 b, this work achieved high capacity of hydrogen and chemical energy storage in gas hydrate at mild conditions. This study will provide guidance on hydrate-chemical hybrid hydrogen storage technology, and leads to the next generation of hybrid hydrate-based hydrogen technology in the future.  相似文献   

2.
This paper presents an experimental study on the application of gas hydrate technology to biogas upgrading. Since CH4, CO2 and H2S form hydrates at quite different thermodynamic conditions, the capture of CO2 and H2S by means of gas hydrate crystallization appears to be a viable technological alternative for their removal from biogas streams. Nevertheless, hydrate-based biogas upgrading has been poorly investigated. Works found in literature are mainly at a laboratory scale and concern with thermodynamic and kinetic fundamental studies. The experimental campaign was carried out with an up-scaled apparatus, in which hydrates are produced in a rapid manner, with hydrate formation times of few minutes. Two types of mixtures were used: a CH4/CO2 mixture and a CH4/CO2/H2S mixture. The objective of the investigation is to evaluate the selectivity and the separation efficiency of the process and the role of hydrogen sulphide in the hydrate equilibrium. Results show that H2S can be captured along with CO2 in the same process. The maximum value of the separation factor, defined as the ratio between the number of moles of CO2 and the number of moles of CH4 removed from the gas phase, is 11. In the gas phase, a reduction of CO2 of 24.5% in volume is achievable in 30 min.Energy costs of a real 30-min separation process, carried out in the experimental campaign, are evaluated and compared with those obtained from theoretical calculations. Some aspects for technology improvement are discussed.  相似文献   

3.
The kinetics of formation of semi-clathrate hydrates of tetra n-butyl ammonium fluoride (TBAF) with hydrogen (H2) and carbon dioxide (CO2) were studied in order to elucidate their potential for H2 storage as well as for CO2 sequestration. The influence of pressure, TBAF concentration (1.8 mol% and 3.4 mol%) and formation method (T-cycle method and T-constant method) on the hydrate nucleation, hydrate growth and the amount of gas uptake were determined. The results showed that the kinetics of formation of H2–TBAF semi-hydrates is favored at high pressures and TBAF concentrations. The TBAF concentration did not display a large influence on the kinetics of formation of CO2–TBAF semi-hydrates and pressure only showed a major influence on the formation rate. Instead, the induction time and the amount of CO2 consumed were favored at low temperatures. Additionally, in situ Raman spectroscopy was used to confirm the gas uptake in the hydrate structure and to observe structural changes.  相似文献   

4.
CO2/H2 mixtures, such as integrated gasification combined cycle (IGCC) syngas, were separated via hydrate formation in water-in-oil (W/O) emulsions. The oil phase was composed of diesel and cyclopentane (CP). Span 20 was used to disperse the aqueous phase or hydrate in the oil phase, and tetra-n-butyl ammonium bromide (TBAB) was added to produce a synergistic effect with CP. The experimental results show that the presence of TBAB can remarkably increase the separation ability and improve the flow behavior of the hydrate slurry. The most suitable contents of TBAB in the aqueous phase and water in the emulsion were determined to be 0.29 mol% and 35 vol%, respectively. The maximum separation factor of CO2 over H2 was 103, which is much higher than the literature values for separating CO2/H2 gas mixture via hydrate formation. After a two-stage separation, hydrogen was enriched from 53.2 to 97.8 mol%. The influence of temperature, pressure, and the initial gas–liquid volume ratio on the separation ability and hydrate formation rate were investigated in detail. In addition, a criterion for choosing the suitable operation conditions was suggested based on both phase equilibrium and kinetic factors. Based on this criterion, the suitable operation temperature, pressure, and gas–liquid volume ratio for the separation of CO2/H2 are approximately 270.15 K, 3–5 MPa, and 80–100, respectively.  相似文献   

5.
Gas hydrates are non-conventional materials offering great potential in capturing, storage, and sequestration of different gases. The weak van der Waals interactions between a gas molecule and the pore walls stabilize these non-stoichiometric structures. The present article reports an ab initio improved van der Waals density functional (vdW-DF2) study devoted to the interactions associated with H2, CH4, and CO2 adsorption in sI clathrate hydrate. The study provides the clathrate stability, diffusion, and energy storage of possible mixed gas occupancy in sI cages in the presence of H2. The results also provided the hydrogen energy landscapes and the estimated diffusion activation energy barriers to the large and small cage to be 0.181 and 0.685 eV, respectively. In addition, the results showed that the presence of CH4 or CO2 could enhance the storage capacity, thermodynamic stability, and hydrogen diffusion in sI clathrates. The volumetric storage, gravimetric storage, and molecular hydrogen content in H2–CH4 binary sI clathrate are calculated to be 2.0 kW h/kg, and 1.8 kW h/L, and 5.0 wt%, respectively. These results are comparable to DOE targets of hydrogen storage.  相似文献   

6.
The recent increase in atmospheric CO2 concentration makes it necessary to investigate new ways to reduce CO2 emissions. Simultaneously, natural gas hydrate mining technology is developing rapidly. The use of depleted methane hydrate (MH) deposits as potential sites for CO2 storage is relatively safe and economical. This method can alleviate the shortage of hydrate displacement gas with CO2. The purpose of this study was to investigate CO2 hydrate formation characteristics during the seepage process—in reservoirs with excess water—and their effect on CO2 storage. The experimental process can be divided into 5 parts: MH formation, water injection, MH dissociation, CO2 hydrate formation, and CO2 hydrate dissociation. Magnetic resonance imaging was employed to monitor the distribution of liquid water, and the effects of different parameters on the formation and dissociation of CO2 hydrates were analyzed. It was found that a state of initial water saturation can effectively control hydrate saturation in artificial MH reservoirs for hydrate reservoirs with excess gas. In the process of CO2 flow, initial water saturation was not the main controlling factor for CO2 hydrate formation. Increasing the flow pressure and reducing the flow rate were beneficial for CO2 hydrate formation. This study is of great significance for advancing the science of CO2 geological storage in the form of deep‐sea hydrates.  相似文献   

7.
LaNi5 alloy can be utilized to directly store and release hydrogen in mild condition, thus it is considered as a long-term safe and stable solid-state hydrogen storage material. In this work, LaNi5H5 was used as the solid-state hydrogen source in the CO2 methanation reaction. Impressively, the carbon dioxide conversion can be achieved to nearly 100% under 3 MPa mixed gas at 200 °C. The microstructure and composition analysis results reveal that the high catalytic activity may originate from the promoted elementary steps over in situ formed metallic Ni nanoparticles during the CO2 methanation process. More importantly, as the lowered reaction temperature prevented the agglomeration of Ni nanoparticles, this catalyst exhibited durable stability with 99% conversion rate of CO2 retained after 400 h cycling test.  相似文献   

8.
Holding CO2 at massive scale in enclathrated solid matter called hydrate can be perceived as one of the most reliable method for CO2 storage in subsurface geological environment. In this study, a dynamically coupled mass, momentum, and heat transfer mathematical model is developed, which elaborates uneven behavior of CO2 flowing into porous medium in space and time domain and converting itself into hydrates. The combined numerical model solution methodology by explicit finite difference iteration method is provided and through coupling the mass, momentum, and heat conservation relations, an integrated model can be presented to investigate the CO2 hydrate growth within P-T equilibrium conditions. The article results illustrate that pressure distribution in hydrate formation becomes stable at initial phase of hydrate nucleation process, but formation temperature is unable to maintain its stability and varies during CO2 injection and hydrate nucleation process. The hydrate growth rate increases by increasing injection pressure from 15 MPa to 16 and 17 MPa in 500-m-long formation, and it also expands overall hydrate-covered length from 200 m to 280 m and 320 m, respectively, in 1 month of hydrate growth period. Injection pressure conditions and hydrate growth rate affect other parameters like CO2 velocity, CO2 permeability, CO2 density, and CO2 and H2O saturation. In order to enhance hydrate growth rate and expand hydrate-covered length, injection temperature is reduced from 282 K to 280 K, but it did not give satisfactory outcomes. In addition, hydrate growth termination and restoration effect is also witnessed due to temperature variations.  相似文献   

9.
This study investigated the effect of gases such as CO2, N2, H2O on hydrogen permeation through a Pd-based membrane −0.012 m2 – in a bench-scale reactor. Different mixtures were chosen of H2/CO2, H2/N2/CO2 and H2/H2O/CO2 at temperatures of 593–723 K and a hydrogen partial pressure of 150 kPa. Operating conditions were determined to minimize H2 loss due to the reverse water gas shift (RWGS) reaction. It was found that the feed flow rate had an important effect on hydrogen recovery (HR). Furthermore, an identification of the inhibition factors to permeability was determined. Additionally, under the selected conditions, the maximum hydrogen permeation was determined in pure H2 and the H2/CO2 mixtures. The best operating conditions to separate hydrogen from the mixtures were identified.  相似文献   

10.
The synergic effect of Cyclopentane (CP) and Tetra-n-butyl Ammonium Bromide (TBAB) on the hydrate-based carbon dioxide (CO2) separation from IGCC (Integrated Gasification Combined Cycle) syngas is investigated by measuring the gas uptake and the power X-ray diffraction (PXRD) patterns in this work. The CP with CP/TBAB solution ratio of 5 vol% added into the 0.29 mol% TBAB solution can remarkably increase the gas uptake at 4.0 MPa and 274.65 K. The PXRD patterns of the semi-clathrate (sc) hydrate and structure II (sII) hydrate are obtained for the CP/TBAB/gas/H2O system. The synergic effect of the CP and the TBAB includes two aspects: On one hand, the CP molecules housed in the hollow centers of the large cavities together with TBAB cations (TBA+) make the sc hydrate more stable. On the other hand, the TBA+ displaced out of the large cavities by the CP molecules make the ionization reaction of TBAB in the solution going toward the reverse direction. Thus, the more TBAB molecules exist in the solution and form the more sc hydrate, resulting in the considerable increase of the gas uptake.  相似文献   

11.
Steam gasification of a typical Chinese bituminous coal for hydrogen production in a lab-scale pressurized bubbling fluidized bed with CaO as CO2 sorbent was performed over a pressure range of ambient pressure to 4 bar. The compositions of the product gases were analyzed and correlated to the gasification operating variables that affecting H2 production, such as pressure (P), mole ratio of steam to carbon ([H2O]/[C]), mole ratio of CaO to carbon ([CaO]/[C]) and temperature (T). The experimental results indicated that the H2 concentration was enhanced by raising the temperature, pressure and [H2O]/[C] under the circumstances we observed. With the presence of CaO sorbent, CO2 in the production gas was absorbed and converted to solid CaCO3, thus shifting the steam reforming of hydrocarbons and water gas shift reaction beyond the equilibrium restrictions and enhancing the H2 concentration. H2 concentration was up to 78 vol% (dry basis) under a condition of 750 °C, 4 bar, [Ca]/[C] = 1 and [H2O]/[C] = 2, while CO2 (2.7 vol%) was almost in-situ captured by the CaO sorbent. This study demonstrated that CaO could be used as a substantially excellent CO2 sorbent for the pressurized steam gasification of bituminous coal. For the gasification process with the presence of CaO, H2-rich syngas was yielded at far lower temperatures and pressures in comparison to the commercialized coal gasification technologies. SEM/EDX and gas sorption analyses of solid residues sampled after the gasification showed that the pore structure of the sorbent was recovered after the steam gasification process, which was attributed to the formation of Ca(OH)2. Additionally, a coal-CaO–H2O system was simulated with using Aspen Plus software. Calculation results showed that higher temperatures and pressures favor the H2 production within a certain range.  相似文献   

12.
Hydrogen rich fuel gas production by gasification of wet biomass accompanied by CO2 absorption is proposed. The paper addressed this topic, and experiments were conducted to investigate the effects of the moisture content (M), the molar ratio of Ca(OH)2 to carbon in the biomass ([Ca]/[C]) and the reactor temperature (T) on hydrogen production and CO2 absorption by CaO. Measurement of the calcium compounds in solid residues was carried out with XRD and SEM. The results show that directly gasifying of wet biomass not only favors hydrogen production but also promotes CO2 absorption by CaO. For the experiment with wet biomass (M = 0.90), the H2 yield is increased by 51.5% while the CO2 content is decreased by 28.4% than that for experiments with dry biomass (M = 0.09). CaO plays the dual role of catalyst and sorbent. It is noteworthy that CaO reveals a stronger effect on the water gas shift reaction than on the steam reforming of methane. The increase of the reactor temperature contributes to produce more H2, but goes against CO2 absorption by CaO. XRD spectrum and SEM image of the solid residues further confirmed that high temperature is unfavorable to CO2 absorption by CaO. For the new method, the optimal operating temperature is in the 923–973 K range.  相似文献   

13.
《Journal of power sources》2006,159(2):1266-1273
In order to supply pure hydrogen to proton exchange membrane (PEM) fuel cells and avoid CO poisoning, selective CO oxidation in H2 was studied over Ce-Pt/γ-Al2O3. Adding the Ce promoted the CO conversion and selectivity of Pt/γ-Al2O3 with changing loading weights of Pt and Ce, oxygen concentration, residence time, and the composition of gases (H2O, CO2, and N2). At 250 °C, adding H2O to the feed gas enhanced the CO conversion due to the water–gas shift reaction. While, adding CO2 to the feed gas suppressed the CO conversion due to the reversible water–gas shift reaction. In situ BET and XRD tests showed that well-dispersed metallic Pt particles (−2 nm) existed on the Ce oxide over the alumina support, which helps to supply oxygen to the Pt for a high activity of CO oxidation and selectivity.  相似文献   

14.
In order to reduce carbon dioxide emission, one solution is to convert into valuable chemicals or fuels, e.g. transforming CO2 into CO by electrochemical reduction. Thus, this greenhouse gas could be re-used in particular as syngas (CO + H2) by co-electrolysis of CO2/H2O. High temperature electrolysis cells can be the best energetic devices to produce such syngas. In particular, molten carbonates are known to solubilize CO2 very significantly higher than other solvents. Therefore, it is compulsory to investigate and understand the mechanism of CO2 reduction in such media to consider its further use and valorisation. The present study is a critical approach aiming at elucidating the mechanisms for CO2 electroreduction, using an inert Pt electrode in the molten eutectic Li2CO3–K2CO3 (62-38 mol%), at 650 °C, under different partial pressures of CO2. Complementary electrochemical techniques, including sweep square-wave voltammetry and relaxation chronopotentiometry, were carried out. Their combination allowed us to evidence that the electroreduction of CO2 into CO is feasible in oxo-acidic conditions, involving a diffusion-limited quasi reversible system in a one electron-step.  相似文献   

15.
The electrocatalytic water splitting consists of two half-reactions, hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), which require low-cost and highly activity catalysts. Two-dimensional transition metal carbon-nitride (MXenes) are considered as the potential catalysts candidates for HER and OER due to their unique physical and chemical properties. In this work, using density functional theory (DFT), we have investigated the effect of single non-metal (NM, NM = B, N, P, and S) atoms doping, strain, and terminal types on the HER and OER activities of V2CO2 MXene. Results indicated that P doping V2CO2 (P/V2CO2) has best HER performance at hydrogen coverage of θ = 1/8, and N doping V2CO2 (N/V2CO2) has best OER performance among the studied systems. In addition, it can be found that there is a strong correlation between the ΔGH and strain, ΔGH and valence charges of the doped atoms after applying strain to the doping structures, with the correlation coefficient (R2) about equal 1. Moreover, the mixed terminal can enhance the performances of HER and OER, which obey the follow rules: mixed terminal (O1 and 1OH) > original terminal (O1) > 1OH terminal. The ab initio molecular dynamics simulations (AIMD) results revealed that the single non-metallic doped structures are stable and can be synthesized experimentally at different terminals.  相似文献   

16.
Under actual operating conditions, cathode materials of Solid Oxide Fuel Cell (SOFC) tend to react with CO2 and/or H2O in air, resulting in degraded performances and stabilities. Here, effects of CO2 and H2O on Ba0.95La0.05FeO3-δ (BLF) cathode are systematically discussed by X-ray diffraction patterns (XRD), electrochemical impedance spectra (EIS) and scanning electron microscope (SEM). The results show that BaCO3 can be formed at 400 °C in a simulated air atmosphere. The content of CO2 and H2O has a significant influence on the polarization resistance (RP) of BLF, the RP of BLF is 0.161 Ω·cm2 in fresh air and 0.649 Ω·cm2 in 3% CO2–5% H2O-92% Air at 700 °C, respectively. But such degradation is reversible by switching working gas into fresh air again. In addition, we propose two alternative ways to improve tolerance of BLF cathode against CO2 and H2O: surface coating Ce0.9Gd0.1O2-δ (GDC) nano-particles on BLF cathode via spray-drying method and mechanical mixing GDC with BLF cathode. Compared with mechanical mixing, surface coating method is more advantageous in lowering the Rp of BLF cathode, which keeps 0.160 Ω·cm2 with 3% CO2–5% H2O-92% Air at 700 °C for 24 h.  相似文献   

17.
Experimental measurements of burning rates, analysis of the key reactions and kinetic pathways, and modeling studies were performed for H2/CO/O2/diluent flames spanning a wide range of conditions: equivalence ratios from 0.85 to 2.5, flame temperatures from 1500 to 1800 K, pressures from 1 to 25 atm, CO fuel fractions from 0 to 0.9, and dilution concentrations of He up to 0.8, Ar up to 0.6, and CO2 up to 0.4. The experimental data show negative pressure dependence of burning rate at high pressure, low flame temperature conditions for all equivalence ratios and CO fractions as high as 0.5. Dilution with CO2 was observed to strengthen the pressure and temperature dependence compared to Ar-diluted flames of the same flame temperature. Simulations were performed to extend the experimentally studied conditions to conditions typical of gas turbine combustion in Integrated Gasification Combined Cycle processes, including preheated mixtures and other diluents such as N2 and H2O.Substantial differences are observed between literature model predictions and the experimental data as well as among model predictions themselves – up to a factor of three at high pressures. The present findings suggest the need for several rate constant modifications of reactions in the current hydrogen models and raise questions about the sufficiency of the set of hydrogen reactions in most recent hydrogen models to predict high pressure flame conditions relevant to controlling NOx emissions in gas turbine combustion. For example, the reaction O + OH + M = HO2 + M is not included in most hydrogen models but is demonstrated here to significantly impact predictions of lean high pressure flames using rates within its uncertainty limits. Further studies are required to reduce uncertainties in third body collision efficiencies for and fall-off behavior of H + O2(+M) = HO2(+M) in both pure and mixed bath gases, in rate constants for HO2 reactions with other radical species at higher temperatures, and in rate constants for reactions such as O + OH + M that become important under the present conditions in order to properly characterize the kinetics and predict global behavior of high-pressure H2 or H2/CO flames.  相似文献   

18.
A study on the effect of CO2 and H2O dilution on the laminar burning characteristics of CO/H2/air mixtures was conducted at elevated pressures using spherically expanding flames and CHEMKIN package. Experimental conditions for the CO2 and H2O diluted CO/H2/air/mixtures of hydrogen fraction in syngas from 0.2 to 0.8 are the pressures from 0.1 to 0.3 MPa, initial temperature of 373 K, with CO2 or H2O dilution ratios from 0 to 0.15. Laminar burning velocities of the CO2 and H2O diluted CO/H2/air/mixtures were measured and calculated using the mechanism of Davis et al. and the mechanism of Li et al. Results show that the discrepancy exists between the measured values and the simulated ones using both Davis and Li mechanisms. The discrepancy shows different trends under CO2 and H2O dilution. Chemical kinetics analysis indicates that the elementary reaction corresponding to peak ROP of OH consumption for mixtures with CO/H2 ratio of 20/80 changes from reaction R3 (OH + H2 = H + H2O) to R16 (HO2+H = OH + OH) when CO2 and H2O are added. Sensitivity analysis was conducted to find out the dominant reaction when CO2 and H2O are added. Laminar burning velocities and kinetics analysis indicate that CO2 has a stronger chemical effect than H2O. The intrinsic flame instability is promoted at atmospheric pressure and is suppressed at elevated pressure for the CO2 and H2O diluted mixtures. This phenomenon was interpreted with the parameters of the effective Lewis number, thermal expansion ratio, flame thickness and linear theory.  相似文献   

19.
The NO mechanism under the moderate or intense low-oxygen dilution (MILD) combustion of syngas has not been systematically examined. This paper investigates the NO mechanism in the syngas MILD regime under the dilution of N2, CO2, and H2O through counterflow combustion simulation. The syngas reaction mechanism and the counterflow combustion simulation are comprehensively validated under different CO/H2 ratios and strain rates. The effects of oxygen volume fraction, CO/H2 ratio, pressure, strain rate, and dilution atmosphere are systematically investigated. For all the MILD cases, the contribution of the prompt and NO-reburning routes to the overall NO emission is less than 0.1% due to the lack of CH4 in fuel. At atmospheric pressure, the thermal route only accounts for less than 20% of the total NO emission because of the low reaction temperature. Moreover, at atmospheric pressure, the contribution of the NNH route to NO emission is always larger than 55% in the N2 atmosphere. The N2O-intermediate route is enhanced in CO2 and H2O atmospheres due to the increased third-body effects of CO2 and H2O through the reaction N2 + O (+M) ? N2O (+M). Especially in the H2O atmosphere, the N2O-intermediate route contributes to 60% NO at most. NO production is reduced with increasing CO/H2 ratio or pressure, mainly due to decreased NO formation from the NNH route. Importantly, a high reaction temperature and low NO emission are simultaneously achieved at high pressure. To minimize NO emission, the reactions should be operated at high values of CO/H2 ratios (i.e., >4) and pressures (e.g., P > 10 atm), low oxygen volume fractions (e.g., XO2 < 15%), and using H2O as a diluent. This study provides a new fundamental understanding of the NO mechanism of syngas MILD combustion in N2, CO2, and H2O atmospheres.  相似文献   

20.
In this study, gas hydrate from CO2/H2 gas mixtures with the addition of tetrahydrofuran (THF) was formed in a semi-batch stirred vessel at various pressures and temperatures to investigate the CO2 separation/recovery properties. This mixture is of interest to CO2 separation and recovery from Integrated Gasification Combine Cycle (IGCC) power plants. During hydrate formation the gas uptake was determined and composition changes in the gas phase were obtained by gas chromatography. The impact of THF on hydrate formation from the CO2/H2 was observed. The addition of THF significantly reduced the equilibrium formation conditions. 1.0 mol% THF was found to be the optimum concentration for CO2 capture based on kinetic experiments. The present study illustrates the concept and provides thermodynamic and kinetic data for the separation/recovery of CO2 (pre-combustion capture) from a fuel gas (CO2/H2) mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号