首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Efficient, robust and low-cost hydrogen evolution reaction (HER) electrodes are highly desirable for realizing the hydrogen economy. Transition metal nitrides with suitable hydrogen adsorption energy have been demonstrated as excellent HER catalysts. Here, we report a simple one-step nitridation method to fabricate Ni3N nanorod arrays on nickel foam (NF) for electrocatalytic water splitting. Large specific surface area and good conductivity endow the self-supported Ni3N/NF electrode extremely low overpotential of η10 = 45 mV and excellent cycle stability for the HER in 1 M KOH aqueous solution. Based on theoretical calculations, it is further verified that nitridation effectively endows NF more suitable free energy for hydrogen adsorption, which leads to an advanced HER activity of Ni3N/NF.  相似文献   

2.
Reasonable construction of heterostructure is of significance yet a great challenge towards efficient pH-universal catalysts for hydrogen evolution reaction (HER). Herein, a facial strategy coupling gas-phase nitridation with simultaneous heterogenization has been developed to synthesize heterostructure of one-dimensional (1D) Mo3N2 nanorod decorated with ultrathin nitrogen-doped carbon layer (Mo3N2@NC NR). Thereinto, the collaborative interface of Mo3N2 and NC is conducive to accomplish rapid electron transfer for reaction kinetics and weaken the Mo–Hads bond for boosting the intrinsic activity of catalysts. As expected, Mo3N2@NC NR delivers an excellent catalytic activity for HER with low overpotentials of 85, 129, and 162 mV to achieve a current density of 10 mA cm?2 in alkaline, acidic, and neutral electrolytes, respectively, and favorable long-term stability over a broad pH range. As for practical application in electrocatalytic water splitting (EWS) under alkaline, Mo3N2@NC NR || NiFe-LDH-based EWS also exhibits a low cell voltage of 1.55 V and favorable durability at a current density of 10 mA cm?2, even surpassing the Pt/C || RuO2-based EWS (1.60 V). Consequently, the proposed suitable methodology here may accelerate the development of Mo-based electrocatalysts in pH-universal non-noble metal materials for energy conversion.  相似文献   

3.
Novel CoFe-LDH (layered double hydroxide) nanosheet arrays in situ grown on rGO (reduced graphene oxide) uniformly modified Ni foam were synthesized by a citric acid-assisted aqueous phase coprecipitation strategy. Systematic characterizations indicates that the series of CoxFe1-LDH/rGO/NF (x = 4, 3, 2) all show CoxFe1-LDH nanosheets (150–180 × 15 nm) grown vertically on the surface of rGO/NF. Especially, the Co3Fe1-LDH/rGO/NF exhibits the best performance with overpotentials of 250 and 110 mV at 10 mA cm?2 in 1 M KOH for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), respectively. When it is used as cathode and anode simultaneously for overall water splitting, they require 1.65 and 1.84 V at 10 and 100 mA cm?2, respectively. Excellent performance of Co3Fe1-LDH/rGO/NF is due to the nanosheet arrays structure with open channels, synergistic coupling between Co3Fe1-LDH and rGO enhancing electrical conductivity, and in-situ growth of Co3Fe1-LDH on rGO/NF enhancing stability.  相似文献   

4.
Self-standing and hybrid MoS2/Ni3S2 foam is fabricated as electrocatalyst for hydrogen evolution reaction (HER) in alkaline medium. The Ni3S2 foam with a unique surface morphology results from the sulfurization of Ni foam showing a truncated-hexagonal stacked sheets morphology. A simple dip coating of MoS2 on the sulfurized Ni foam results in the formation of self-standing and hybrid electrocatalyst. The electrocatalytic HER performance was evaluated using the standard three-electrode setup in the de-aerated 1 M KOH solution. The electrocatalyst shows an overpotential of 190 mV at ?10 mA/cm2 with a Tafel slope of 65.6 mV/dec. An increased surface roughness originated from the unique morphology enhances the HER performance of the electrocatalyst. A density functional approach shows that, the hybrid MoS2/Ni3S2 heterostructure synergistically favors the hydrogen adsorption-desorption steps. The hybrid electrocatalyst shows an excellent stability under the HER condition for 12 h without any performance degradation.  相似文献   

5.
Designing active, stable and affordable electrocatalysts is a promising pathway for fulfilling the mankind's dream of preserving unsustainable fuel sources. Herein, the facile utilization of Romanesco-like and arrow-like nanostructures of Ni-W samples is introduced. Exclusive emphasis is placed on achievement of the unique nanostructure through cost-effective, repeatable and readily accessible two-step techniques, i.e. Ni-W electrodeposition approach followed by etching treatment. Microscopic study was fully utilized for surface morphology and structural investigation. The electrochemical analysis was used to evaluate the electrocatalytic activity and stability. The surface roughness of the Ni-W film electrodeposited by D.C = 90% and etched via acidic solution was up to 93.85, considerably higher than that of the Ni-W electrodeposited by D.C = 20% and without etched Ni-W films (55.36 and 41.51 respectively). Therefore, HER activity was improved with η10 and η20 of 169 and 226 mV vs. RHE, respectively, due to higher effective active surface for H+ adsorption. The Tafel slope analysis suggests Volmer mechanism as the HER rate-determining step. The electrochemically active surface area was also enhanced from roughly 2 to 10 cm2. In addition, wettability was investigated by a contact angle of less than 65°, which indicates high penetration of electrolyte to the nanostructure. Rapid separation of bubbles on the arrow-like nanostructure of Ni-W films exhibited unstable H2 bubbles on surface of the electrode.  相似文献   

6.
As a two-dimensional material, molybdenum disulfide (MoS2) exhibits great potential to replace metal platinum-based catalysts for hydrogen evolution reaction (HER). However, poor electrical conductivity and low intrinsic activity of MoS2 limit its application in electrocatalysis. Herein, we prepare a defective-MoS2/rGO heterostructures material containing 1T phase MoS2 and evaluate its HER performance. The experimental results shown that defective-MoS2/rGO heterostructures exhibits outstanding HER performance with a low overpotential at 154.77 mV affording the current density of 10 mA cm?2 and small Tafel slope of 56.17 mV dec?1. The unique HER performance of as-prepared catalyst can be attributed to the presence of 1T phase MoS2, which has more active sites and higher intrinsic conductivity. While the defects of as-prepared catalyst fully expose the active sites and further improve catalytic activity. Furthermore, the interaction between MoS2 and rGO heterostructures can accelerate electron transfer kinetics, and effectively ensure that the obtained catalyst displays excellent conductivity and structural stability, so the as-prepared catalyst also exhibits outstanding electrochemical cycling stability. This work provides a feasible and effective method for preparation of defective-MoS2/rGO heterostructures, which also supplies a new strategy for designing of highly active and conductive catalysts for HER.  相似文献   

7.
Hydrogen evolution reaction (HER) and electrochemical analysis are two important fields of electrochemical research at present. We found that both HER and some electrochemical analytical reactions relied on the concentration of hydrogen ions (H+) in solution, so we intended to develop an electrode material that is sensitive to H+ and can be used for both HER and some electrochemical analyses. In this work, we synthesized Ni3Mo3N coupled with nitrogen-rich carbon microspheres (Ni3Mo3N@NC MSs) as highly efficient electrode material for HER and detection of Hydrogen peroxide (H2O2), which plays an important role in physiological processes. Here the aniline was used as the nitrogen and carbon sources to synthesize Ni3Mo3N@NC. The Ni3Mo3N@NC MSs showed high performance for HER in 1 M KOH solution with a small overpotential of 51 mV at 10 mA cm?2 and superior stability. For H2O2 detection, a detection limit of 1 μM (S/N = 3), sensitivity of 120.3 μA·mM?1 cm?2 and linear range of 5 μM–40 mM can be achieved, respectively. This work will open up a low-cost and easy avenue to synthesize transition metal nitrides coupled with N-doped carbon as bifunctional electrode material for HER and electrochemical detection.  相似文献   

8.
Due to the augmentation of societies and the need for more energy, attention to clean and renewable energy has increased. One of these alternative energies was the use of water splitting. Since the oxidation reaction of water suffers from a delayed reaction, it is important to use efficient and low-cost electrocatalysts in the process. In this work we report the synthesis of ZnFe2O4@ZnFe2S4 by the hydrothermal method. Here, we successfully synthesize the ZnFe2O4@ZnFe2S4 core-shell nanosheet on Ni Foam via a novel and facile process for oxygen evolution reactions (OER). The metal-based electrode made of ZnFe2O4@ZnFe2S4 is efficient for the electrochemical reaction of water oxidation due to its electrical strength and high catalytic activity. The catalyst is calcined at 400 °C and characterized by XRD, FESEM, TEM, EDS, MAP and RAMAN techniques. The electrolysis of water using ZnFe2O4@ZnFe2S4/NF a current density of 5 mA cm?2 can be achieved by cell voltage of 1.45 V (vs. RHE) volts in a solution of 1 M KOH. The catalyst synthesized to reach 5 mA cm?2 in oxygen evolution reaction only has 222 mV overpotentials.  相似文献   

9.
The design and development of highly efficient and stable non-noble metal electrocatalysts for hydrogen evolution reaction (HER) have attracted increasing attention. However, some key issues related to large overpotential, high cost and poor stability at high current density still remains challenging. In this work, we report a facile in-situ integration strategy of porous Ni2P nanosheet catalysts on 3D Ni foam framework (PNi2P/NF) for efficient and stable HER in alkaline medium. The two-step method can creates high density of ultra-thin porous Ni2P nanosheets firmly rooted into Ni foam substrate which can guarantee excellent electrical contacts, strong substrate adherence and large amount of active sites. Such a binder-free flexible HER cathode exhibits superior electrocatalytic performance with an overpotential of 134 mV at current density of 10 mA cm−2. It also shows superior stability at higher current densities of 100 and 500 mA cm−2 for at least 48 h and negligible performance degradation is observed.  相似文献   

10.
The development of cost-effective and high-efficiency electrocatalysts for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) still remains highly challenging. Exposing as many active sites as possible is the key method to improve activity of HER and OER performance. In this communication, we demonstrate a novel 3D hierarchical network NiCo2S4 nanoflake grown on Ni foam (NiCo2S4-NF) as a highly efficient and stable electrochemical catalyst. The NiCo2S4-NF exhibits overpotentials as low as 289 and 409 mV at 100 mA cm?2, superior long-term durability during a 20 h measurement, and a low Tafel slope of 89 and 91 mV dec?1 for HER and OER in 1.0 M NaOH solution. The outstanding performance is owe to the inherent activity of ultrathin NiCo2S4 nanoflakes and the special structure of NiCo2S4-NF that can provide a huge number of exposed active sites, accelerate the transfer of electrons, and facilitate the diffusion of electrolyte simultaneously.  相似文献   

11.
Developing efficient and low-cost electrocatalysts for hydrogen evolution reaction (HER) is important for hydrogen fuel production. In this study, we synthesized two different types of CoS2 under low sulfur (LS) and high sulfur concentration (HS) conditions. Structural analysis results show that CoS impurity phase forms easily when the concentration of sulfur is low, while at high sulfur concentration the growth of CoS impurity phase is inhibited and leads to phase-pure CoS2. Electrochemical investigation of HER performance reveals that the onset potential of CoS2 (HS) electrode (ca. − 0.11 V vs. the reversible hydrogen electrode, RHE) is 30 mV anodic of the CoS2 (LS) one (ca. − 0.14 V vs. RHE). At a specific current density of 10 mA cm−2 the required overpotential on CoS2 (HS) electrode is only 163 mV, which is 40 mV less than the CoS2 (LS) electrode. Electrochemical impedance spectroscopy (EIS) data further demonstrate that the charge transfer rate of CoS2 (HS) electrode is faster than that of CoS2 (LS) electrode towards HER.  相似文献   

12.
Reasonable design of efficient and stable catalysts with low cost and abundant natural reserves is vital for electrocatalytic water splitting. Herein, novel nanotremella-like Bi2S3/MoS2 composites with different mass ratios between Bi2S3 and MoS2 have been successfully prepared through a hydrothermal approach and further applied to hydrogen evolution reaction (HER) in 1.0 M KOH electrolyte for the first time. When the mass ratio of Bi2S3 and MoS2 is 5:5, as-prepared nanotremella-like Bi2S3/MoS2 (marked as BMS-5) manifests favorable HER catalytic activity with overpotential of 124 mV at current density of 10 mA cm−2 and relatively low Tafel slope of 123 mV dec−1. Moreover, it exhibits an extraordinary durability for uninterrupted hydrogen generation. The enhanced HER performances are ascribed to the synergistic effects between Bi2S3 and MoS2, giving rise to large electrocatalytic active area and fast HER kinetics. The results pave a new path to design and construct excellent Bi2S3/MoS2 nanomaterials for electrocatalytic hydrogen generation.  相似文献   

13.
Exploration for an earth-rich and competent electrocatalyst for the hydrogen evolution reaction (HER) is a significant and challenging approach to confronting the resources shortage and environmental crisis. Porous N-doped Mo2C@C (N-Mo2C@C) nanoparticles self-encapsulated in nanospheres are presented as a high-performing HER electrocatalyst fabricated through a one-pot solvothermal method followed by hydrogen calcination. Structural analyses show that acetamide can regulate the size of the nanospheres, provide a N source for doping and form porous structures composed of Mo2C, which suggests the exposure of extensive active sites as well as the contact and diffusion among the medium, electrodes, and gas. Theoretical calculations show that the N doping can enhance the activity of the Mo-C bond, reduce the energy of capturing hydrogen intermediates, and increase the catalytic conductivity. This work offers a simple and promising strategy to understand the catalytic mechanism required to optimize the activity of Mo-based electrocatalysts via N doping.  相似文献   

14.
Designing and optimizing structure is an effective method to enhance electrocatalytic performance of transition metal-based catalysts. In this work, an innovative nanostructured electrode, consisted of peapod-like Ni2P@N-doped carbon nanorods array coating on carbon fiber (CF@p-Ni2P@NC), is devised and synthesized. The N-doped carbon layer is crucial for maintaining the peapod-like nanostructure, which allows for multi-channel electrolyte transport and gas product release. And the carbon layer coating Ni2P nanoparticles also enhance electrical conductivity and stability, thus ensuring fast electron transport from/to active sites and the long-term stability of catalyst during urea oxidation reaction (UOR)/hydrogen evolution reaction (HER). Benefit from the reasonable structure, CF@p-Ni2P@NC present perfect performance with getting 100 mA cm?2 at potential/overpotential of 1.417/0.194 V for UOR/HER in 1.0 M KOH containing 0.5 M urea. In addition, the overall urea-electrolysis system using CF@p-Ni2P@NC bifunctional electrode only requires 1.590 V to obtain 100 mA cm?2.  相似文献   

15.
In this study, we demonstrated the active electrocatalysts of CoS2 coated by N-doped carbon microspheres, CoS2@NHCs-x (x = 600, 700, 800, and 900; x is pyrolysis temperature). Results show that the obtained electrocatalyst has good catalytic activity and cyclic stability for the reaction of hydrogen evolution (HER) when the pyrolysis temperature is 800 °C. At a current density of 10 mA cm−2, the overpotential of CoS2@NHCs-800 was only 98 mV in 0.5 M H2SO4, and 118 mV in 1 M KOH, respectively. In addition, CoS2@NHCs-800 also revealed excellent electrochemical stability, with only 32.7% performance degradation after continuous reaction in 0.5 M H2SO4 for 20 h, and the later current density almost no longer deceased with time as the reaction process stabilized. The excellent HER catalytic performance of CoS2@NHCs-800 is mainly attributed to the rich active sites of CoS2, the unique porous core-shell structure, and the enhanced conductivity of the carbon carrier caused by N and S co-doping. This work opens up an opportunity for advanced CoS2-based electrocatalysts for HER.  相似文献   

16.
Using low cost and high efficiency non-precious bimetallic phosphosulphide as electrocatalyst for hydrogen evolution reaction (HER) is not only convenient but also environment-friendly for industrial production. Therefore, we propose a simple and efficient method to prepare a series of Cu-doped bimetallic phosphosulphide nanosheet arrays on nickel foam (CuNiS@Ni2P/NF). The CuNiS@Ni2P/NF exhibits the superior HER performance with appropriate doping amount of Cu. It just needs a potential of 144 mV to obtain the current density of 10 mA cm−2 in 1.0 M KOH, which is smaller than that of CuNiS@Ni2P/NF-0.25 (206 mV) and CuNiS@Ni2P/NF-0.125 (219 mV). The excellent HER performance of CuNiS@Ni2P/NF nanosheet arrays can be ascribed to: (i) the moderate Cu-doped effectively optimized the electronic structure and morphology of the electrocatalyst; (ii) typical nanosheet arrays structures exposing more active sites; (iii) the high immanent activity excited by the multi-component synergy.  相似文献   

17.
Hindered by price and scarcity, the exploitation of supported Pt-based electrocatalysts with Pt single atoms or Pt nanoclusters is an alternative way to decrease the dosage of Pt and improve the electrocatalytic performance for hydrogen evolution reaction (HER) of water splitting. The anodization technology is used to modify the surface of nickel foam (NF) to form the porous NiF2 network structure. Then Pt nanodots interfaced with Ni(OH)2 (Pt/Ni(OH)2) hybrid on the anodized NF has been in-situ synthesized by a simple hydrothermal decomposition method. Results show that Pt nanodots on the substrate have good dispersion with the average size of 3 nm, and the Pt loading is only 0.229 mg cm−2. The prepared electrode exhibits the low overpotentials of 25.9 mV and 211 mV at the current densities of 10 and 100 mA cm−2, respectively, a small Tafel slope of 37.6 mV dec−1, and the excellent durability for HER. The porous network nanostructure of Pt/Ni(OH)2 hybrid, the large electrochemical surface area, the fast facilitated electron transport capability, and the firm adhesion of Pt nanodots with the anodized NF substrate contribute to the remarkable performance towards HER.  相似文献   

18.
We investigated the hydrogen evolution reaction (HER) properties of multi-wall carbon nanotubes (MWCNTs) treated at extremely high temperature (2600 °C). The heat treatment not only improves the crystallinity of the MWCNTs, but also reduces the carbon-oxygen (CO) bonding as it is replaced by the defect-carbon (sp3 and CH) bonding. These modifications in the heat treated MWCNT structure lead to the increase of electrochemical charge transfer. The heat treatment of MWCNTs in the composite with Pt (MWCNT-Pt composite) further facilitates electrocatalysis. The MWCNTs-Pt composite shows strong enhancement in the HER performance with an onset of overpotential of ?0.04 V vs reversible hydrogen electrode and a Tafel slope of 10.9 mV/decade. This performance is indeed better than that of Pt, which is the best working material for HER.  相似文献   

19.
High-performance, low-cost and robust electrocatalysts for the hydrogen evolution reaction (HER) play a critical role in large-scale hydrogen production via water splitting. Herein, we proposed a synthesis strategy for the self-assembly of maize-like CoP nanorod arrays with abundant active sites via a combination of conventional hydrothermal reaction and low-temperature phosphorization. This unique architecture exhibited remarkable catalytic performance for the HER, with a low overpotential of 130 mV at a current density of 10 mA cm?2 and a small Tafel slope of 59 mV dec?1 in 1.0 M KOH electrolyte, as well as good stability as verified by chronoamperometry measurement for 10 h. Density functional theory calculations further revealed that these maize-like CoP nanorod arrays with dense active sites and a high phosphorization degree could boost the HER performance in terms of low adsorption energy and free energy. This work provided a facile strategy towards manipulating morphology engineering to enhance the HER activity of CoP-based catalysts.  相似文献   

20.
Ternary transition metal chalcogenide (TTMC) with multicomponent, different phases and unique electronic structures have been studied in electrocatalytic hydrogen evolution reaction (HER). However, the strong interaction between adsorbed H (H1) and sulfur leads to the unfavorable hydrogen desorption properties of considerable TTMC. Herein, we constructed the hierarchical hollow NiCo2S4 nanotube@NiCo2S4 nanosheet arrays on Ni foam substrate (NT-NiCo2S4@NS-NiCo2S4/NF) by ion-exchange method. Homogeneous anion diffusion facilitates the formation of regular ultrathin nanosheets on hollow NiCo2S4 nanotube arrays, which presents hierarchical architecture with more surface area and channels to active site exposure, electrolyte diffusion, and gas desorption for HER. As-synthesized optimal NT-NiCo2S4@NS-NiCo2S4/NF electrode demonstrates an excellent HER activity, especially an overpotential of 221 mV, a Tafel slope of 108 mV dec?1, and remarkable stability at current densities of 100 mA cm?2 in 1.0 M NaOH electrolyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号