首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Generating oxygen vacancies is an effective way to improve photoelectrochemical (PEC) water splitting performance of semiconductor materials owing to the formation of shallow donor level and the supply of additional electron donor. Herein, oxygen vacancies were introduced into In2O3 nanorods by a hydrothermal reduction method using NaBH4 solution as the reductant, and the effects of hydrothermal reduction time on the oxygen vacancy concentration, optoelectronic property and PEC water splitting activity over In2O3 nanorods were systematically investigated. The results of LSV, EIS and MS showed that the reduced samples displayed superior PEC performance and In2O3-x-1 exhibited a highest photocurrent density of 0.97 mA cm?2 at 1.23 V vs. RHE under the irradiation of visible light, which was roughly 4 times of bare In2O3. The remarkable performance of In2O3-x-1 is mainly ascribed to the introduction of oxygen vacancies, which leads to better light absorption capacity, higher carrier concentration, and increased electron transport efficiency at the electrode/electrolyte interface.  相似文献   

2.
Solar-assisted water splitting using photoelectrochemical (PEC) cell is an environmentally benign technology for the generation of hydrogen fuel. However, several limitations of the materials used in fabrication of PEC cell have considerably hindered its efficiency. Extensive efforts have been made to enhance the efficiency and reduce the hydrogen generation cost using PEC cells. Photoelectrodes that are stable, efficient and made of cost-effective materials with simple synthesizing methods are essential for commercially viable solar water splitting through PEC technology. To this end, hematite (α-Fe2O3) has been explored as an excellent photoanode material to be used in the application of PEC water oxidation owing to its suitable bandgap of 2.1 eV that can utilize almost 40% of the visible light. In this study, we have summarized the recent progress of α-Fe2O3 nanostructured thin films for improving the water oxidation. Strategic modifications of α-Fe2O3 photoanodes comprising nanostructuring, heterojunctions, surface treatment, elemental doping, and nanocomposites are highlighted and discussed. Some prospects related to the challenges and research in this innovative research area are also provided as a guiding layout in building design principles for the improvement of α-Fe2O3 photoanodes in photoelectrochemical water oxidation to solve the increasing environmental issues and energy crises.  相似文献   

3.
In this work, we report for the first time a plasmonic photoanode by decorating Au nanoparticles (NPs) onto two-dimensional (2D) Co3O4 nanosheets (NSs)/one-dimensional (1D) TiO2 nanorod arrays (NRAs) (Au/Co3O4/TiO2-NRAs) for enhanced visible-light photoelectrochemical (PEC) water splitting. In this plasmonic photoanode, TiO2 NRAs act as an electron acceptor, plasmonic Au NPs and hierarchical Co3O4 NSs serve as visible-light harvesters. Light absorption shows that Au/Co3O4/TiO2-NRAs heterojunction architectures exhibit greatly improved ability to harvest visible light due to the surface plasmon resonance (SPR) absorption of Au NPs and visible light harvesting ability of Co3O4 NSs. Spectroscopic measurements demonstrate that a type II band alignment is formed between Co3O4 and TiO2. Benefiting from the SPR effect, type II band alignment and novel hierarchical architecture, plasmonic Au/Co3O4/TiO2-NRAs photoanode shows remarkably enhanced visible-light PEC water splitting activity compared with Co3O4/TiO2-NRAs and pristine TiO2-NRAs photoanodes. Photocurrent density achieved by plasmonic photoanode is 37 and 1.2 times higher than those of TiO2-NRAs and Co3O4/TiO2-NRAs photoanodes, respectively. This work provides a promising strategy to highly enhance visible-light PEC water splitting activity of wide band-gap semiconductor-based photoelectrode materials.  相似文献   

4.
The CdSe@TiO2 core‐shell nanorod arrays for photoelectrochemical (PEC) application were designed and constructed by a facile electrochemical deposition strategy. The CdSe@TiO2 photoanodes exhibit highly efficient PEC performance under visible light irradiation, among which the CdSe shell layer thickness can be precisely adjusted by different electrodeposition time. In comparison with nude TiO2 nanorods, the optimized CdSe@TiO2 photoanode (TC‐500) shows a significant saturated photocurrent density of 2.1 mA/cm2 at 0 V (vs Ag/AgCl), which is attributed to the good distribution of CdSe nanoparticles on TiO2 nanorod arrays, the favorable band alignment, and the intimate interfacial interaction between CdSe nanoparticles and TiO2 nanorods. The introduction of CdSe shell layer does not only improve light absorption ability but also enhances photogenerated charge carrier's transfer and separation. This current work systematically studies the accurate adjustment of CdSe shell layer thickness on TiO2 nanorod arrays by electrochemical deposition strategy and provides a paradigm to design and fabricate heterostructure composite for PEC application.  相似文献   

5.
The design of photoanode with highly efficient light harvesting and charge collection properties is important in photoelectrochemical (PEC) cell performance for hydrogen production. Here, we report the hierarchical In2O3:Sn/TiO2/CdS heterojunction nanowire array photoanode (ITO/TiO2/CdS-nanowire array photoanode) as it provides a short travel distance for charge carrier and long light absorption pathway by scattering effect. In addition, optical properties and device performance of the ITO/TiO2/CdS-nanowire array photoanode were compared with the TiO2 nanoparticle/CdS photoanode. The photocatalytic properties for water splitting were measured in the presence of sacrificial agent such as SO32− and S2− ions. Under illumination (AM 1.5G, 100 mW/cm2), ITO/TiO2/CdS-nanowire array photoanode exhibits a photocurrent density of 8.36 mA/cm2 at 0 V versus Ag/AgCl, which is four times higher than the TiO2 nanoparticle/CdS photoanode. The maximum applied bias photon-to-current efficiency for the ITO/TiO2/CdS-nanowire array and the TiO2 nanoparticle/CdS photoanode were 3.33% and 2.09%, respectively. The improved light harvesting and the charge collection properties due to the increased light absorption pathway and reduced electron travel distance by ITO nanowire lead to enhancement of PEC performance.  相似文献   

6.
The hydrogen generation from photoelectrochemical (PEC) water splitting under visible light was investigated using large area tungsten oxide (WO3) photoanodes. The photoanodes for PEC hydrogen generation were prepared by screen printing WO3 films having typical active areas of 0.36, 4.8 and 130 cm2 onto the conducting fluorine-doped tin oxide (FTO) substrates with and without embedded inter-connected Ag grid lines. TiO2 based dye-sensitized solar cell was also fabricated to provide the required external bias to the photoanodes for water splitting. The structural and morphological properties of the WO3 films were studied before scaling up the area of photoanodes. The screen printed WO3 film sintered at 500 °C for 30 min crystallized in a monoclinic crystal structure, which is the most useful phase for water splitting. Such WO3 film revealed nanocrystalline and porous morphology with grain size of ∼70-90 nm. WO3 photoanode coated on Ag grid embedded FTO substrate exhibited almost two-fold degree of photocurrent density enhancement than that on bare FTO substrate under 1 SUN illumination in 0.5 M H2SO4 electrolyte. With such enhancement, the calculated solar-to-hydrogen conversion efficiencies under 1 SUN were 3.24% and ∼2% at 1.23 V for small (0.36 cm2) and large (4.8 cm2) area WO3 photoanodes, respectively. The rate of hydrogen generation for large area photoanode (130.56 cm2) was 3 mL/min.  相似文献   

7.
The rational design of heterostructures as an ideal photoelectrode system for H2 and O2 conversion in photoelectrochemical (PEC) system has been regarded as an essential key to boost PEC performance. In this work, to demonstrate the energetic photoanode cell, deposition of a thin layer of Bi2O3 is utilized to hybridize with the 5 wt% Ba-doped TiO2 nanorod heterostructure under the cascading band diagram, where Ba-doping can enhance the charge transport/separation rate in bulk phase, in terms of increasing the donor density, enhancing the bulk electronic conductivity, and increasing the band bending. Furthermore, with optimizing the thickness (~15 nm) of Bi2O3, the (NiFe)OOH as a cocatalyst was adapted to improve the interfacial charge transfer rate in the PEC cell, reaching the high photocurrent density (J) of ~4.1 mA/cm2 at 1.23 V (vs. Reversible Hydrogen Electrode) and stability retention of 100%, even after 15 h at 1 M NaOH under 1 Sun illumination condition. The improvement mainly comes from the extended absorption of visible light from the thin Bi2O3 layer, effective transfer/separation of photogenerated charge carriers, and acceleration of water oxidizing reaction, caused by the narrowed band gap and the favorable charge transfer under the cascading band alignment built by the heterojunction, as well as electrocatalyst, offering the timely consumption of photogenerated holes accumulated at the electrode surface.  相似文献   

8.
To overcome the global challenges of energy crises and environmental threats, urea oxidation is a hopeful route to utilize urea-rich wastewater as an energy source for hydrogen production. Herein, we report an inorganic/organic type of nano-heterostructure (NHs–Ni-TiO2/p-NDIHBT) as a photoanode with excellent urea oxidation efficiency driven by visible light. This heterostructured photoanode consists of nickel (Ni)-doped TiO2 nanorods (NRs) arrays as an inorganic part and a D-A-D type organic polymer i.e p-NDIHBT as an organic part. The as-prepared photoanode was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The morphological studies of TEM confirm the coating of p-NDIHBT on Ni–TiO2 NPs (~1 μm). The consequence of heterostructure formation on optical and photoelectrochemical (PEC) properties of photoanode were explored through photoelectrochemical responses under visible light irradiation. The photoelectrochemical activity of Ni–TiO2 and Ni–TiO2/p-NDIHBT photoanode from linear sweep voltammetry (LSV) shows the ultrahigh photocurrent density of 0.36 mA/cm2 and 2.21 mA/cm2, respectively measured at 1.965 VRHE. Electrochemical impedance spectroscopy (EIS) of both photoanodes shows a highly sensitive nature toward the urea oxidation reaction. The hybrid photoanode also exhibits high photostability, good solar-to-hydrogen conversion efficiency, and high faradaic efficiency for urea oxidation.  相似文献   

9.
The catalytic reactivity and photoactivity of WO3 and BiVO4 oxide semiconductors have general obstacles as electrodes in emergent photo-electrochemical (PEC) hydrogen evolution applications. The present work comprises the integration of photocatalyst with wide visible photon absorption material which is vital for hydrogen evolution in photo-electrocatalytic water splitting. Herein, the 1D WO3 NWs have been integrated with stable water oxidation photocatalysts of BiVO4 and Bi2S3 as a photoanode (Bi2S3/BiVO4/WO3) for photoelectrochemical hydrogen evolution reactions. The morphological variations in the Bi2S3/BiVO4/WO3 heterostructure manifest catalytic activity and rapid charge transfer characteristics owing to band alignment and a wide range of visible photon absorption. The optimized Bi2S3/BiVO4/WO3 multidimensional photoanode accomplishes a superior photocurrent density of 1.52 mA/cm2, a seven-fold higher than pristine WO3 photoanode counterpart (0.2 mA/cm2) at 1 V vs. RHE. A prodigious lowest onset potential of ?0.01 V vs. RHE) has been achieved which enables very high solar to hydrogen conversion. The photoelectrode with entangled morphology such as nanosheets, nanocrystals and nanorods expanded their surface to volume ratio having enhanced catalytic performance. The hybrid photoanodes have demonstrated the lowest charge transfer resistance of 360 Ohm/cm2 with a 7-fold rise in hydrogen evolution performance. The resultant triadic Bi2S3/BiVO4/WO3 heterostructure appeared to be an emerging stable photo-electro catalyst for hydrogen evolution applications.  相似文献   

10.
Novel heterostructure photocatalyst built from titanium dioxide (TiO2), graphene oxide (GO) and indium sulfide (In2S3) has been successfully prepared for photoelectrochemical hydrogen production. The stepwise introduction of three materials on conductive glass substrate has been realized through hydrothermal, electrochimical and spin coating deposition methods, respectively. The structure, morphology, composition, optical and photoelectrochemical properties of the resultant photoanodes were investigated in detail. The presence of GO in the heterostructure film was confirmed by Raman analysis with D and G band intensity. Surface morphology analysis of the GO/In2S3/TiO2 NRs structure reveal the homogenous distribution of graphene oxide on In2S3/TiO2 NRs surface. From UV–Vis analysis, band gap energy of the samples decreases gradually from 3.34 eV (TiO2 NRs) to 3.12 eV, with In2S3 and GO addition. The electrochemical impedance spectroscopy (EIS) further confirmed that GO/In2S3/TiO2NRs heterostructure possessed the lowest charge-transfer resistance, revealing that In2S3 and GO could significantly accelerate the electron mobility compared with bare TiO2. From Mott-Schottky plots, several parameters such as flat-band potential and free carrier concentration were determined. Next, The GO/In2S3/TiO2 NRs electrode achieved remarkably improved current density (0.45 mAcm2 at 0.8 V vs Ag/AgCl) compared to pure TiO2 NRs or In2S3/TiO2 NRs electrodes, which attributes to the uniform structure and excellent electrical conductivity of GO, which could reduce the combination rate of the photo electron-hole pairs. These results reveal that GO/In2S3/TiO2 NRs possesses great potential toward the development of newly synthesizable catalysts in the field of photoelectrochemical water splitting.  相似文献   

11.
Constructing heterosystems by sensitizing a wide band gap semiconductor with a narrow band gap semiconductor is an effective way to improve photocatalytic performance. Bismuth sulfide (Bi2S3) has a direct band gap of 1.38 eV and shows great potential in capturing visible light, which makes it a good candidate for photocatatlytic applications. In this work, Bi2S3 nanoparticles were efficiently deposited on TiO2 nanotube arrays (Bi2S3-TNTAs) by sequential chemical bath deposition (CBD) method to enhance visible light response of the photocatalytic system. Notably, a high-throughput screening method of scanning photoelectrochemical microscopy (SPECM) was exploited to evaluate photoelectrochemical response of the as-prepared composites and to find out the optimized photocatatlytic system. The effects of Bi2S3 nanoparticles on visible light absorption and photoelectrocatalytic hydrogen production rate of the TiO2-system were investigated in detail. When adopted as photoanode, the optimized heteroelectrode exhibited a more than 13-fold enhancement in hydrogen production rate. The result of electrochemical impedance spectroscopy (EIS) and photoluminescence (PL) shows that photo-generated charges excited under visible light in Bi2S3-TNTAs composites are efficiently separated, which gives rise to the superior photoelectrocatalytic performance of the Bi2S3-TNTAs photoanodes.  相似文献   

12.
Constructing heterojunction was an efficient way to promote photoelectrochemical (PEC) water splitting performance of TiO2-based nano-photoanode. In this work, we demonstrated the feasible preparation of oxygen vacancies-induced In2O3 (In2O3-x) nanorods/black Si-doped TiO2 (Ti–Si–O) nanotubes heterojunction photoanode for enhanced PEC water splitting. Black Ti–Si–O nanotubes were fabricated through Zn reduction of the as-annealed Ti–Si–O nanotubes, followed by In2O3-x nanorods coupling by a facile electrodepositing and Ar heat treatment. Solar to hydrogen conversion efficiency of the heterojunction photoanode reached as high as 1.96%, which was almost 10 times that of undoped TiO2. The improved PEC properties were mainly attributed to co-doping effects of Si and Ti3+/oxygen vacancy as well as In2O3-x decoration, which resulted in enhanced optical absorption and facilitated separation-transport process of photogenerated charge carriers. Charge transfer process in the composite system and hydrogen production mechanism were proposed. This work will facilitate designing TiO2-based nano-photoanodes for promoting water splitting by integrating with elements doping, oxygen vacancies self-doping and semiconductors coupling.  相似文献   

13.
A possibility of semiconductor-sensitized thin film solar cells have been proposed. Nanocrystalline In2S3-modified In2O3 electrodes were prepared with sulfidation of In2O3 thin film electrodes under H2S atmosphere. The band gap (Eg) of In2S3 estimated from the onset of the absorption spectrum was approximately 2.0 eV. The photovoltaic properties of a photoelectrochemical solar cell based on In2S3/In2O3 thin film electrodes and I/I3 redox electrolytes were investigated. This photoelectrochemical cell could convert visible light of 400–700 nm to electron. A highly efficient incident photon-to-electron conversion efficiency (IPCE) of 33% was obtained at 410 nm. The solar energy conversion efficiency, η, under AM 1.5 (100 mW cm−2) was 0.31% with a short-circuit photocurrent density (Jsc) of 3.10 mA cm−2, a open-circuit photovoltage (Voc) of 0.26 V, and a fill factor ( ff ) of 0.38.  相似文献   

14.
Herein, the pyramid-like In2S3 film was synthesized for photoelectrochemical (PEC) hydrogen generation using a facile hydrothermal route for the first time. The hydrothermal time was crucial to determine the morphology and composition of the as-prepared films. When the hydrothermal time lasted for 24 h, the pyramid-like In2S3 film could be achieved. With the increased hydrothermal time, the photocurrent first increased and then decreased, and the pyramid-like In2S3 film prepared for 24 h showed the highest photocurrent. After an annealing treatment, the photocurrent could be improved to 2.7 mA cm?2 at 0.78 V vs. RHE, and a substantial hydrogen generation was observed. Compared to previously reported In2S3 films with different morphologies, the pyramid-like In2S3 film exhibited better PEC property. It was revealed that the remaining In2O3 after the synthesis of In2S3 had a great influence on the PEC performance. The pyramid-like In2S3 film with a moderate amount of In2O3 induced an efficient charge separation and transfer, as well as good light-absorption ability, which led to the superior PEC performance. This work has demonstrated great potentials of the pyramid-like In2S3 film for PEC hydrogen generation and opened a promising avenue towards the design and fabrication of novel pyramid-like nanostructures.  相似文献   

15.
Conversion of solar energy into hydrogen energy via photoelectrochemical (PEC) water splitting is one of the most promising approaches for generation of clean and sustainable hydrogen energy in order to address the alarming global energy crisis and environmental problems. To achieve superior PEC performance and solar to hydrogen efficiency (STH), identification, synthesis, and development of efficient photoelectrocatalysts with suitable band gap and optoelectronic properties along with high PEC activity and durability is highly imperative. With the aim of improving the performance of our previously reported bilayer photoanode of WO3 and Nb and N co-doped SnO2 nanotubes i.e. WO3-(Sn0.95Nb0.05)O2:N NTs, herein, we report a simple and efficient strategy of molybdenum (Mo) doping into the WO3 lattice to tailor the optoelectronic properties such as band gap, charge transfer resistance, and carrier density, etc. The Mo doped bilayer i.e. (W0.98Mo0.02)O3-(Sn0.95Nb0.05)O2:N revealed a higher light absorption ability with reduced band gap (1.88 eV) in comparison to that of the undoped bilayer (1.94 eV). In addition, Mo incorporation offered improvements in charge carrier density, photocurrent density, with reduction in charge transfer resistance, contributing to a STH (~3.12%), an applied bias photon-to-current efficiency (ABPE ~ 8% at 0.4 V), including a carrier density (Nd ~ 7.26 × 1022 cm?3) superior to that of the undoped bilayer photoanode (STH ~2%, ABPE ~ 5.76%, and Nd ~5.11 × 1022 cm?3, respectively). The substitution of Mo6+ for W6+ in the monoclinic lattice, forming the W–O–Mo bonds altered the band structure, realizing further enchantments in the PEC reaction and charge transfer kinetics. Additionally, doped bilayer photoanode revealed excellent long term PEC stability under illumination, suggesting its robustness for PEC water splitting. The present work herein provides a simple and effective Mo doping approach for generation of high performance photoanodes for PEC water splitting.  相似文献   

16.
Hematite is a prospective semiconductor in photoelectrochemical (PEC) water oxidation field due to its suitable bandgap for the solar spectrum absorption. Nevertheless, the low transfer and separation efficiency of the charge carriers are restricted by its diffusion length of hole which is 2–4 nm and further reduce the PEC performance. Here, we report an innovative method, by introducing nanocavities into the α-Fe2O3 nanorod arrays photoanodes through helium ions implantation, to improve the charge carriers' transfer and separation efficiency and further to enhance water oxidation performance. The result indicates that, the photocurrent density of nanocavities embedded α-Fe2O3 photoanode (S2-A sample) reaches 1.270 mA/cm2 at 1.6 V vs. RHE which is 1-fold higher than that of the pristine α-Fe2O3 (0.688 mA/cm2) and the photocurrent density of S2-A sample reaches 0.652 mA/cm2 at 1.23 V vs. RHE. In this work, the ion implantation combined with post annealing method is found to be a valid method to improve the photoelectrochemical performance, and it also can be further used to modify the other semiconductor photoelectrodes materials.  相似文献   

17.
Ultrathin hematite (α-Fe2O3) film deposited on a TiO2 underlayer as a photoanode for photoelectrochemical water splitting was described. The TiO2 underlayer was coated on conductive fluorine-doped tin oxide (FTO) glass by spin coating. The hematite films were formed layer-by-layer by repeating the separated two-phase hydrolysis-solvothermal reaction of iron(III) acetylacetonate and aqueous ammonia. A photocurrent density of 0.683 mA cm−2 at +1.5 V vs. RHE (reversible hydrogen electrode) was obtained under visible light (>420 nm, 100 mW cm−2) illumination. The TiO2 underlayer plays an important role in the formation of hematite film, acting as an intermediary to alleviate the dead layer effect and as a support of large surface areas to coat greater amounts of Fe2O3. The as-prepared photoanodes are notably stable and highly efficient for photoelectrochemical water splitting under visible light. This study provides a facile synthesis process for the controlled production of highly active ultrathin hematite film and a simple route for photocurrent enhancement using several photoanodes in tandem.  相似文献   

18.
Developing novel photoanodes with high efficiency for photoelectrochemical (PEC) water splitting has become the key to solar energy conversion and storage realm. Herein, 3D worm-like bismuth vanadate (BiVO4) is grafted on 2D thin tungsten trioxide (WO3) underlayer by electrodeposition to form mixed–dimensional structured photoanode, resulting in significant improvement of the photocatalytic performance and the charge separation efficiency. Characterization results prove that the mixed–dimensional structured can boost the photocatalytic activity by suppressing back reaction and charge recombination of the bulk BiVO4. Simultaneously, the electrical conductivity of photoanode can be increased by W6+ doping. Furthermore, a robust catalyst NiCo2Ox is coated onto the surface of WO3/BiVO4 photoanode, exhibiting a desirable photocurrent of 3.85 mA cm?2 at 1.23 V vs. RHE and an excellent stability over 3 h. Both the excellent photocurrent density and great operational stability of this 2D/3D WO3/BiVO4 photoanode make it a promising material for practical applications.  相似文献   

19.
Using vanadium oxide (V2O5) inverse opal (IO) as a three-dimensional (3D) electron transporting tunnel, bismuth vanadate (BiVO4) as a light harvester, and Amorphous Nickel Hydroxide (NiOOH) as an oxygen evolution co-catalyst, a V2O5@BiVO4@NiOOH IO architecture was fabricated as an efficient photoanode on a conductive fluorine doped tin oxide (FTO) substrate for photoelectrochemical (PEC) water oxidation. V2O5 is the visible light absorbing photoanodes for water oxidation; however, the efficiency of this compound remains low (∼0.08 mA/cm2 at 1.23 V vs. reversible hydrogen electrode (VRHE)) and the unfavorable surface trap states limits the activity of V2O5 photoelectrodes in a PEC system. We found that the photoactive thin conductive BiVO4 (∼12 nm) in the V2O5 IO greatly enhanced the charge separation efficiency to achieve better PEC water oxidation through modification of the surface states. The subsequent addition of NiOOH as an effective Oxygen evolution catalyst subsequently reduces the large overpotential and generates the photocurrent density of 1.14 mA/cm2 at 1.23 VRHE. Electrochemical impedance spectroscopy (EIS) evidenced that NiOOH deposition can substantially lower the charge transfer resistance (Rct) at the semiconductor interface. Specifically, the consecutive and ordered morphology renders direct conduction pathways for the extraction of photogenerated electron/hole pairs and the convenient structure to penetrate the photogenerated carriers toward the semiconductor surface over the electrolyte. It is expected that the uninterrupted pathways will improve the electron transportation and thus the charge collection properties.  相似文献   

20.
The optimization of photoelectrode is the key issue for the efficient photoelectrochemical water splitting process. In this work, the TiO2 photoanode is synthesized and modified with ZnIn2S4 nanosheets and Co-Pi cocatalyst (TiO2/ZnIn2S4/Co-Pi) for a favorable photoelectrochemical performance. The synthesis and modification process of the TiO2 photoanode are optimized. The physical and chemical characterizations indicate that the TiO2 has a nano-cauliflower-like structure and rutile crystal form modified with a network hexagonal ZnIn2S4 nanosheets and amorphous Co-Pi groups. After optimization of the hydrothermal and annealing process, the optimized TiO2 photoanode manifests a photocurrent density of 1.82 mA cm?2, 1.73-fold of the pristine TiO2 photoanode (1.05 mA cm?2). With the surficial ZnIn2S4 and Co-Pi modification, the photocurrent density of the TiO2/ZnIn2S4/Co-Pi photoanode is raised to 5.05 mA cm?2, 5.32-fold of the optimized TiO2 photoanode (1.82 mA cm?2). The applied bias photon-to-current efficiency, the charge separation and injection efficiencies of the TiO2/ZnIn2S4/Co-Pi photoanodes are 8.79, 3.40, and 1.64-folds of the optimized TiO2 photoanode. Combined the Tauc plot, valence band XPS spectra, EIS and Mott-Schottky analysis, the PEC water splitting mechanism could be that: (i) the type II heterojunction formed by the TiO2 and ZnIn2S4 semiconductors improves the charge separation/injection efficiencies; (ii) the Co-Pi groups facilitate the oxygen evolution kinetics; (iii) the Co-Pi groups and 2D ZnIn2S4 nanosheets synergistically enhance the charge separation efficiency. This investigation could offer a prospect of practical implementation for photoelectrochemical water splitting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号