首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, the hydrogen selling price from ethanol steam reforming has been estimated for two different production scenarios in the United States, i.e. central production (150,000 kg H2/day) and distributed (forecourt) production (1500 kg H2/day), based on a process flowchart generated by Aspen Plus® including downstream purification steps and economic analysis model template published by the U.S Department of Energy (DOE) [1]. The effect of several processing parameters as well as catalyst properties on the hydrogen selling price has been evaluated. $2.69/kg is estimated as the selling price for a central production process of 150,000 kg H2/day and $4.27/kg for a distributed hydrogen production process at a scale of 1500 kg H2/day. Among the parameters investigated through sensitivity analyses, ethanol feedstock cost, catalyst cost, and catalytic performance are found to play a significant role on determining the final hydrogen selling price.  相似文献   

2.
Energy crisis has led the communities around the world to use energy hubs. These energy hubs usually consist of photovoltics, wind turbines and batteries. Diesel generators are usually used in these systems as backup system. In this research, for the first time, an attempt is made to replace the traditional diesel only backup system with hydrogen only system and combined hydrogen and diesel backup system in hybrid photovoltaic and wind turbine energy systems. After introducing the available energy modeling tools and methods, explaining over advantages and disadvantages of each one, HOMER software was selected for this research. The simulations of this research show that using the traditional diesel generator as the backup system of the energy hub, creates a low cost system with the net present cost (NPC) of 2.5 M$ but also produces the highest amount carbon emission which is equal to 686 tons/year. The results of this study also indicate the hybrid renewable energy system which is supported by the hydrogen only backup system has the highest net present cost (NPC) and initial capital cost but reduces the maximum amount of carbon. The calculated NPC and carbon production of the energy hub using hydrogen only backup system are equal to 4.39 M$ and 55,205, respectively. On the other hand, the combined hydrogen/diesel backup system has reduced NPC compared with the hydrogen only backup system. The CO2 production of this system is also lower than the diesel only backup system. The calculations indicate that the NPC and CO2 production of the combined backup system are 3.53 M$ and 511,695 kg/yr. By comparing advantages and disadvantages of all 3 scenarios, the micro grid which uses the combined diesel/hydrogen backup system is selected as the most optimal system. The sensitivity analysis of the selected system shows that fluctuations of inflation rate along with the fluctuations of both fuel cells and electrolyzers capital cost do not affect the net present cost (NPC) considerably. On the other hand, fluctuations of capital cost of the main components like wind turbines affect the NPC much more than the others. If the inflation rate drops from 15% to 14% and wind turbine capital cost multiplier reduces from 1 to 0.8, the NPC value will drop by the value of 300,000 $.  相似文献   

3.
4.
The green hydrogen economy is considered one of the sustainable solutions to mitigate climate change. This study provides an economic analysis of a novel liquified hydrogen (LH2) tanker fuelled by hydrogen with a total capacity of ~280,000 m3 of liquified hydrogen named ‘JAMILA’. An established economic method was applied to investigate the economic feasibility of the JAMILA ship as a contribution to the future zero-emission target. The systematic economic evaluation determined the net present value of the LH2 tanker, internal rate of return, payback period, and economic value added to support and encourage shipyards and the industrial sector in general. The results indicate that the implementation of the LH2 tanker ship can cover the capital cost of the ship within no more than 2.5 years, which represents 8.3% of the assumed 30-year operational life cycle of the project in the best maritime shipping prices conditions and 6 years in the worst-case shipping marine economic conditions. Therefore, the assessment of the economic results shows that the LH2 tankers may be a worthwhile contribution to the green hydrogen economy.  相似文献   

5.
Proton exchange membrane fuel cell (PEMFC) receives increasing attention as an alternative in small-scale residential distributed generation (DG) application, especially for remote cold region where the utility electricity is not accessible. The open-cathode PEMFC is featured with the integrated fabrication of air supply and coolant flow cathode. Although simple, the waste heat of the exhaust air is difficult to reuse by heat exchangers, because of the low exhaust temperature. To this end, this paper investigates a hybrid structure consisting of open-cathode PEMFC and heat pump. It is revealed in this paper that the oxygen excess ratio of open-cathode PEMFC is usually as big as 100, which makes it doable and safe to directly exporting the exhaust air into the indoor environment. The temperature of the mixed air is thereby lifted. The thermal load of the heat pump is consequently alleviated and the power consumption is reduced. A comprehensive quantitative model is developed by considering the fuel cell electrochemical characteristic, cathode thermodynamics and heat pump coefficient. A case study is carried out by comparing the coefficient of performance (COP) of the system with and without the cogeneration design, showing a 7.6% improvement of the proposed hybrid structure. The results of the paper depict a promising prospect in accelerating the commercialization of open-cathode PEMFC in the field of domestic cogeneration filed.  相似文献   

6.
Vehicle fires in the tunnel are a great threat to the safe operation of the tunnel. Due to the rapid development of the hydrogen economy, the fire due to the hydrogen leakage could not be avoided and may bring great damage to the passengers and infrastructure. Due to the large difference between pool fires of traditional fossil-fueled and jet fires of hydrogen-powered vehicles, it is in doubt whether the existing longitudinal ventilation design could still be effective for the safety issue of hydrogen powered vehicles. To solve this problem, it is necessary to compare temperature characteristics of hydrogen-powered and traditional vehicle fires with and without longitudinal ventilations. In present work, we conducted a numerical investigation to discuss the different temperature distributions of traditional and hydrogen-fueled vehicle fires. Results indicate that the high temperature zone of the pool fire only exists above the ceiling of the vehicle. For hydrogen-powered vehicle fire, the high-speed hydrogen jet with the strong inertial force could push the hot smoke flows back to the ground. The ceiling temperature of hydrogen-powered vehicle fire is larger since hydrogen-powered vehicle has a larger heat release rate and the fire hazard of jet fires bring more danger compared with the pool fire. Although the temperature stratification is also obvious for the hydrogen-powered vehicle fire, the air temperature in the lower region could be heated and still high enough to bring a great damage to the passengers’ lives. This is quite different with the traditional pool fire. In addition, the critical ventilation velocity is also discussed. The theoretical equation could well predicted the critical ventilation velocity of traditional vehicle fires. For hydrogen-powered vehicle fires, the critical ventilation velocity could reach up to 6 m/s. The theoretical equation could not well predict the critical ventilation velocity of hydrogen-powered vehicle fires due to exist of hydrogen jet fires.  相似文献   

7.
热泵原理及发展和供热经济性分析   总被引:1,自引:0,他引:1  
对热泵原理进行了阐述,介绍了热泵在我国的发展与应用,对热泵的技术性和热泵供热的经济性进行了分析,并与其它常用能源供热所需费用进行了综合的比较,提出了热泵技术在中国的发展前景和展望。  相似文献   

8.
A detailed economics model of hydrogen infrastructure in California has been developed and applied to assess several potential fuel cell vehicle deployment rate and hydrogen station technology scenarios. The model accounts for all of the costs in the hydrogen supply chain and specifically examines a network of 68 planned and existing hydrogen stations in terms of economic viability and dispensed hydrogen cost. Results show that (1) current high-pressure gaseous delivery and liquid delivery station technologies can eventually be profitable with relatively low vehicle deployment rates, and (2) the cost per mile for operating fuel cell vehicles can be lower than equivalent gasoline vehicles in both the near and long term.  相似文献   

9.
The large variety of potential hydrogen and fuel cell applications and the associated uncertainties of selecting a particular application pose a challenge for developers in the field: identifying and evaluating promising market niches. Therefore, we conducted an online survey comprising a choice experiment in Switzerland and Germany to assess fleet decision-makers’ preferences for hydrogen-powered street sweepers compared to (more) conventional diesel and compressed natural gas (CNG)/biogas vehicles. The findings indicate that the fleet decision-making structures and vehicle operating practices make street sweeper fleets a promising application for the early implementation of hydrogen fuel cell vehicles. Furthermore, the results show that a market niche for hydrogen-powered sweepers exists in both countries. The choice experiment was a useful approach for the identification of promising market niches and thereby reduces the uncertainties of application selection.  相似文献   

10.
On account of the energy crisis, several types of solar energy devices have been developed and marketed in various parts of the world with varying degrees of thermal performance. The economic aspect of these solar energy devices becomes more significant when they replace those devices which use conventional fuels. In this paper, an economic analysis of one of the solar energy devices, namely a G.I. sheet multiwick solar distillation plant, has been presented taking into account the various factors, viz. the lifetime of the system, salvage values of the system, interest rate and maintenance cost.  相似文献   

11.
D.K. Luo  Y.J. DaiL.Y. Xia 《Energy》2011,36(1):360-368
Coalbed methane (CBM) is a kind of unconventional natural gas. China has abundant CBM resource and its CBM industry is expected to prosper in the future. However, China’s currently imperfect CBM industry policy still needs to be further improved to support the sustainable development of CBM industry. To provide recommendations for policy makers, economic evaluation is conducted to find out the overall economic viability of China’s CBM resource and the factors with most impact on the economic viability of CBM resource. The results show that there is still about 42% of China’s CBM resource uneconomic to develop under current industry policy and that the three factors with most impact on the economic viability of CBM resource are CBM price, production rate and operating costs. And then, policy scenario analysis is conducted to test the validity of major policies and find out the impact of different policies under different scenarios on the profitability of CBM recourse. The results demonstrate that value-added tax (VAT) reimbursement policy, financial subsidy policy and corporate income tax exemption policy are effective to improve the economic viability of CBM recourse. According to these results, some pointed recommendations on CBM industry policy are put forward.  相似文献   

12.
Hydrogen is acclaimed to be an energy carrier of the future. Currently, it is mainly produced by fossil fuels, which release climate-changing emissions. Thermochemical cycles, represented here by the hybrid-sulfur cycle and a metal oxide based cycle, along with electrolysis of water are the most promising processes for ‘clean’ hydrogen mass production for the future. For this comparison study, both thermochemical cycles are operated by concentrated solar thermal power for multistage water splitting. The electricity required for the electrolysis is produced by a parabolic trough power plant. For each process investment, operating and hydrogen production costs were calculated on a 50 MWth scale. The goal is to point out the potential of sustainable hydrogen production using solar energy and thermochemical cycles compared to commercial electrolysis. A sensitivity analysis was carried out for three different cost scenarios. As a result, hydrogen production costs ranging from 3.9–5.6 €/kg for the hybrid-sulfur cycle, 3.5–12.8 €/kg for the metal oxide based cycle and 2.1–6.8 €/kg for electrolysis were obtained.  相似文献   

13.
In this work, hydrate based separation technique was combined with membrane separation and amine-absorption separation technologies to design hybrid processes for separation of CO2/H2 mixture. Hybrid processes are designed in the presence of different types of hydrate promoters. The conceptual processes have been developed using Aspen HYSYS. Proposed processes were simulated at different flow rates for the feed stream. A comprehensive cost model was developed for economic analysis of novel processes proposed in this study. Based on the results from process simulation and equipment sizing, the amount of total energy consumption, fixed cost, variable cost, and total cost were calculated per unit weight of captured CO2 for various flow rates of feed stream and in the presence of different hydrate promoters. Results showed that combination of hydrate formation separation technique with membrane separation technology results in a CO2 capture process with lowest energy consumption and total cost per unit weight of captured CO2. As split fraction and heat of hydrate formation increases, the share of hydrate formation section in total energy consumption increases. When TBAB is applied as hydrate promoter, due to its higher hydrate separation efficiency, more amount of CO2 is captured in hydrate formation section and consequently the total cost for process decreases considerably. Hybrid hydrate-membrane process in the presence of TBAB as hydrate promoter with 29.47 US$/ton CO2 total cost is the best scheme for hybrid hydrate CO2 capture process. Total cost for this process is lower than total cost for single MDEA-based absorption process as the mature technology for CO2 capture.  相似文献   

14.
Climate change is probably the most relevant global challenge. For this reason, governments are promoting energy efficiency programmes, carbon capture technologies, and renewable energies as a way to reduce carbon emissions and mitigate climate change. Hydrogen is a clean alternative to fossil fuels in automotive applications. In this context, the objective of this project is to find the best design of a hydrogen refuelling station in terms of the number of banks and their size, having as a final aim the most cost-efficient design. This study suggests that, from an economic point of view, a state of charge for the vehicle of 100% is not adequate, since it requires very large high-pressure banks at the station, which increases significantly its setup costs. The study finds that high-pressure banks have to be bigger in volume than the low-pressure banks to minimise the total cost of the station, including setup and operational costs along its timespan. Finally, the project shows that the optimal number of banks is 4 or a maximum of 5. As a side conclusion, these results have practical implications for firms, as they might reduce the time spent in the design process of a hydrogen refuelling station.  相似文献   

15.
The waste heat management of the data center cooling systems has a significant share in the energy-efficient operations of the data centers. In this study, a new hybrid desalination-data center cooling system is proposed to reduce the cost drawback of the waste heat in the data center cooling operations. A two-phase liquid-immersion cooling unit is selected as the data center cooling method with the cooling load range of 0.7 to 1.5 kW. It is a promising solution thanks to the high heat flux removal performance but there is still a lack of research about waste heat management. The waste heat of the immersion cooling system is used to heat up the feed side of the desalination module. A direct contact membrane distillation system as preferred as the desalination module with the membrane area range of 5 to 75 cm2. The proposed hybrid system is investigated according to the thermodynamic, economic, and thermoeconomic aspects. The thermoeconomic assessment is done concerning the unique exergy-cost matrix of the original design. The maximum thermal and exergy efficiencies are found as 64.5% and 53.7%, respectively. The daily distilled water rate can reach 6.13 kg at the highest cooling load and membrane area. Compared to the stand-alone data center cooling operation, the hybrid system has higher capital and operation costs. The payback period is found 3.72 years that means the proposed system is economically feasible for real applications. Also, the levelized product cost of the hybrid design is calculated in the range of 2.69 to 5.33 SGD/h. In the multiobjective optimization study, the best trade-off point is decided at the cooling load of 1.1 kW whilst the membrane area varies between 5.12 and 5.19 cm2.  相似文献   

16.
In this study, a novel geothermal-based multigeneration system is designed and evaluated in energy, exergy and economic (3E) analyses. Besides 3E analyses, multi-objective optimization has been assessed to reach the highest exergetic effectiveness and the lowest total cost rate. To evaluate the designed plant, thermodynamic balance equations are assigned to all sub-systems found in the design. These equations are solved by using Engineering Equation Solver (EES) software. According to the analyses' results, with base parameters, total power production is 1951 kW, the hydrogen generation rate is 0.0015 kg/s, and the whole energy and exergy efficiencies are 59.53% and 53.17%. The economic analysis performed for the multigeneration system indicates that the total cost rate is 186 $/h, and the levelized energy cost is 0.102 $/kWh. These results indicate that the designed geothermal-based multigeneration system performs better than a single-generation plant in terms of efficiency and cost.  相似文献   

17.
Although there has been a lot of waste heat utilization studies for the air-cooled data center (DC) systems, the waste heat utilization has not been studied for the liquid-cooled DC systems, which have been rapidly gaining importance for the high-performance Information and Communication Technology facilities such as cloud computing and big data storage. Compared to the air-cooled systems, higher heat removal capacity of the liquid-cooled DC systems provides better heat transfer performance; and therefore, the waste heat of the liquid-cooled DC systems can be more efficiently utilized in the low-temperature and low-carbon energy systems such as electricity generation via polymer electrolyte membrane (PEM) fuel cells. For this purpose, the current study proposes a novel hybrid system that consists of the PEM fuel cell and the two-phase liquid-immersion DC cooling system. The two-phase liquid immersion DC cooling system is one of the most recent and advanced DC cooling methods and has not been considered in the DC waste heat utilization studies before. The PEM fuel cell unit is operated with the hydrogen and compressed air flows that are pre-heated in the DC cooling unit. Due to its original design, the hybrid system brings its own original design criteria and limitations, which are taken into account in the energetic and exergetic assessments. The power density of the PEM fuel cell reaches up to 0.99 kW/m2 with the water production rate of 0.0157 kg/s. In the electricity generation case, the highest energetic efficiency is found as 15.8% whereas the efficiency increases up to 96.16% when different multigeneration cases are considered. The hybrid design deduces that the highest exergetic efficiency and sustainability index are 43.3% and 1.76 and they are 9.4% and 6.6% higher than exergetic and sustainability performances of the stand-alone PEM fuel cell operation, respectively.  相似文献   

18.
Due to the side effects of greenhouse gases, interest in alternative energy sources is growing, and research into hydrogen (Н2) production from cyanobacteria has become a promising direction for the industry. The article provides an overview of cyanobacterial hydrogen production strategies and their current economic efficiency. It also describes metabolic, genetic and technical methods for obtaining H2 from cyanobacteria. Cyanobacteria are considered potential producers of hydrogen energy that will be economically viable shortly, as they only need cheap salts, water and solar energy to grow. However, producing hydrogen from cyanobacteria still requires extensive work, and the main problem is the small amount of hydrogen energy obtained. To produce large amounts of cyanobacterial hydrogen, the most active wild-type strains must be selected and technological, modular and genetic research must be carried out simultaneously. The low energy efficiency of hydrogen from cyanobacteria also shows the need for comprehensive research through international programs.  相似文献   

19.
Inadequate management of swine manure can lead to contamination of watercourses, groundwater, soil, and air, representing a risk to the sustainability and expansion of pig farming as an economic activity. The aim of this study was to evaluate the potential of this waste for the production of hydrogen from swine manure biogas through steam reforming and water gas shift processes. In this study, calculations of ecological, exergetic and economic efficiencies were carried out. The ecological efficiency, pollution indicator and energy efficiency of the process were, respectively, 93.73%, 19.15 and 79.06%, showing the viability from an ecological standpoint. This is an 8-year plant payback with a hydrogen production cost of $0.14/kWh, in a production scenario of 8760 h/year, showing an exergetic efficiency of 76%. The results from these analyses demonstrates that this type of hydrogen production is an attractive economic route. The results from these analyses have shown that this hydrogen production technology has great economic potential and presents high exegetic yield.  相似文献   

20.
Several automakers have expressed their intention to start commercializing hydrogen vehicles on a larger scale by 2015. This commercialization requires efficient roll-out of hydrogen fueling stations, with prior identification of the areas most suitable for their establishment. Suitability of the different areas will be determined by several supply and demand and environmental criteria. In this article, in the case of Spain, we apply a methodology based on Data Envelopment Analysis to select the appropriate municipalities for the establishment of hydrogen fueling stations in the early stages of the deployment process. This methodology has the advantage of reducing subjectivity in the criteria aggregation process for the selection of municipalities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号