首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于光学定容燃烧弹试验平台,通过高速纹影摄像系统在相同甲烷燃料初始温度、压力及混合气浓度下,定量分析了不同结构预燃室湍流射流点火(turbulent jet ignition,TJI)的燃烧特性,包括火焰传播速度、火焰面积、火焰形态及燃烧压力等参数。研究结果表明,预燃室孔径越小,相同时间内火焰传播得越远,火焰传播速度和火焰面积增长速度越快,燃烧压力峰值越高。随着预燃室孔径减小,着火机理会由射流中带有火焰的火焰点火转变为火焰过孔时熄灭的喷射点火。喷射点火着火时刻延迟,初始火焰速度减慢,但燃烧压力峰值受影响不大。多级加速预燃室压力升高率与压力峰值与单孔预燃室相比变化不大。虽然火焰出口时速度较慢,但是火焰出口时刻提前且速度衰减较弱,因此多级加速预燃室火焰速度在短时间内超过单孔预燃室,并且压力和火焰面积也更早达到最大值。  相似文献   

2.
Spark-less jet ignition pre-chambers are enablers of high efficiencies and load control by quantity of fuel injected when coupled with direct injection of main chamber fuel, thus permitting always lean burn bulk stratified combustion. Towards the end of the compression stroke, a small quantity of hydrogen is injected within the pre-chamber, where it mixes with the air entering from the main chamber. Combustion of the air and fuel mixture then starts within the pre-chamber because of the high temperature of the hot glow plug, and then jets of partially combusted hot gases enter the main chamber igniting there in the bulk, over multiple ignition points, lean stratified mixtures of air and fuel. The paper describes the operation of the spark-less jet ignition pre-chamber coupling CFD and CAE engine simulations to allow component selection and engine performance evaluation.  相似文献   

3.
The global rush for decarbonization and the more restrictive emission regulations are pushing the research for cleaner powertrains to the transport sector. In this sense, this work contributes with an experimental investigation of the performance and emissions of a single-cylinder SI engine operating under lean-burn hydrogen combustion. Its performance, combustion parameters, exhaust emissions, and indicated efficiency for a wide range of mixture dilutions are then compared to methane under similar engine load conditions. Hydrogen achieved stable combustion up to lambda 3.4, presenting zero CO emission and very low HC emission for all tested operating conditions. Hydrogen operation also presented zero NOx emissions for conditions leaner than lambda 2.2 and 3.0 at 2000 and 3000 rpm, respectively, however, the NOx emissions increase as the mixture is enriched. The high in-cylinder pressure rise rate limited the operation at mixtures richer than lambda 1.3 at 2000 rpm. When compared to methane, the hydrogen allows de-throttle the engine to burn lean mixtures maintaining a proper flame speed, resulting in lower pumping losses, lower pollutants emissions for most of the conditions tested, and higher indicated efficiency, making hydrogen a promising fuel to replace conventional fuels on cleaner SI engines.  相似文献   

4.
Liquefied natural gas (LNG), mainly composed of methane, is in progress to substitute diesel fuel in heavy-duty marine engine for practical, economic, and environmental considerations. However, natural gas is relatively difficult to be ignited in a large bore combustion chamber. A combustion enhancement technique called pre-chamber turbulent jet ignition (TJI) can permit combustion and flame propagation in a large-bore volume. To investigate the effect of air-fuel equivalence ratio and pre-mixed pressure on pre-chamber TJI of methane/air mixtures with multiple orifices in a large bore volume, experimental tests and computational simulations were implemented to study the discharge of hot turbulent jets from six orifices of the pre-chamber. Different initial pressures and air-fuel equivalence ratios were considered to analyze the characteristics of TJI. The asymmetry of the turbulent jet actuated from six different orifices were found due to the asymmetric orientation of the spark plug, resulting in the inhomogeneous distribution of combustion in the constant volume chamber, which should be considered seriously in the marine engine design. Besides, as the premixed pressure increases, it has more effect on the flame propagation and plays a more important role, as it further increases.  相似文献   

5.
Large eddy simulation of spark ignition in a turbulent methane jet   总被引:3,自引:0,他引:3  
Large eddy simulation (LES) is used to compute the spark ignition in a turbulent methane jet flowing into air. Full ignition sequences are calculated for a series of ignition locations using a one-step chemical scheme for methane combustion coupled with the thickened flame model. The spark ignition is modeled in the LES as an energy deposition term added to the energy equation. Flame kernel formation, the progress and topology of the flame propagating upstream, and stabilization as a tubular edge flame are analyzed in detail and compared to experimental data for a range of ignition parameters. In addition to ignition simulations, statistical analysis of nonreacting LES solutions is carried out to discuss the ignition probability map established experimentally.  相似文献   

6.
Premixed hydrogen/air deflagrations were performed in a 100 mm × 100 mm × 1000 mm square duct closed at one end and opened at the opposite end under ambient conditions, concerning with the combined effect of ignition position IP and equivalence ratio ?. A wide range of ? ranging from 0.4 to 5.0, as well as multiple IPs varying from 0 mm to 900 mm off the closed end of the duct were employed. It is indicated that IP and ? exerted a great impact on the flame structure, and the corresponding pressure built-up. Except for IP0, the flame can propagate in two directions, i.e., leftward and rightward. A regime diagram for tulip flames formation on the left flame front (LFF) was given in a plane of ? vs. IP. In certain cases (e.g. the combinations of ? = 0.6 and IP500 or IP700), distorted tulip flames were also observed on the right flame front (RFF). Furthermore, the combinations of IP and ? gave rise to various patterns of pressure profiles. The pressure profiles for ignition initiated at the right half part of the duct showed a weak dependence on equivalence ratio, and showed no dependence on ignition position. However, the pressure profiles for ignition initiated at the left half part of the duct were heavily dependent on the combination of IP and ?. More specifically, in the leanest (? = 0.4) and the richest (? = 4.0–5.0) cases, intensive periodical oscillations were the prime feature of the pressure profiles. With the moderate equivalence ratios (? = 0.8–3.0), periodical pressure oscillations were only observed for IP900. The maximum pressure peaks Pmax were reached at ? = 1.25 rather than at the highest reactivity ? = 1.75 irrespective of ignition position. The ignition positions that produced the worst conditions were different, implying a complex influence of the combination of IP and ?.  相似文献   

7.
In this study, coke oven gas (COG), a by-product of coke manufacture with a high volumetric percentage of H2 and CH4, has been identified as auxiliary support and promising energy source in stationary internal combustion engines. Engine performance (power and thermal efficiency) and emissions (NOx, CO, CO2 and unburned hydrocarbons) of COG, pure H2 and pure CH4 have been studied on a Volkswagen Polo 1.4 L port-fuel injection spark ignition engine. Experiments have been done at optimal spark advance and wide open throttle, at different speeds (2000–5000 rpm) and various air-fuel ratios (λ) between 1 and 2. The obtained data revealed that COG combines the advantages of pure H2 and pure CH4, widening the λ range of operation from 1 to 2, with very good performance and emissions results comparable to pure gases. Furthermore, it should be highlighted that this approach facilitates the recovery of an industrial waste gas.  相似文献   

8.
Effect of turbulent jet ignition induced by pre-chamber sparkplug (PCSP), a simper version of turbulent jet ignition pre-chamber system without fuel injection, on the air-hydrogen combustion characteristics was conducted based on an optical constant volume chamber under varied equivalence ratio conditions. The dynamic pressure sensor and schlieren system were used to evaluate the heat release and flame propagation characteristics. The results confirm the feasibility of PCSP type turbulent jet. The jet increase the flame propagation speed significantly compared to standard ignition, which shorten ignition delay and combustion duration, advance T50 largely, and increase the maximum combustion pressure slightly. As a result, the combustion intensity is increased largely, especially under lean regime, the combustion intensity index can be as high as 1.7 at certain equivalence ratio. In addition, the PCSP turbulent jet reduces the sensitivity of heat release to variation of equivalence ratio, which is helpful to simplify the combustion controlling strategy. Furthermore, with the enhancement of the flame propagation, the tendency of knocking combustion can be suppressed potentially.  相似文献   

9.
This paper describes an experimental investigation of heat transfer inside a CFR spark ignition engine operated at a constant engine speed of 600 rpm. The heat flux is directly measured under motored and fired conditions with a commercially available thermopile sensor. The heat transfer during hydrogen and methane combustion is compared examining the effects of the compression ratio, ignition timing and mixture richness. Less cyclic and spatial variation in the heat flux traces are observed when burning hydrogen, which can be correlated to the faster burn rate. The peak heat flux increases with the compression ratio, but the total cycle heat loss can decrease due to less heat transfer at the end of the expansion stroke. An advanced spark timing and increased mixture richness cause an increased and advanced peak in the heat flux trace. Hydrogen combustion gives a heat flux peak which is three times as high as the one of methane for the same engine power output.  相似文献   

10.
The elevated temperature of hydrogen combustion increases the formation of thermal NOx. Moderate or intense low oxygen dilution (MILD) combustion is known to reduce NOx emissions and increase thermal efficiency. Pressure is often also used for increasing thermal efficiency. The impact that pressure has on fluid dynamics and chemical kinetics is especially relevant in MILD combustion conditions. Hydrogen jet flames issuing into a hot and vitiated coflow were imaged using OH1 chemiluminescence at different pressures (1–7 bar) and oxygen levels (3–9% by vol.). Laminar flame simulations complemented the experiments. The observed mean radial OH1 width increased with increased pressure, but only at O2 content less than 9%, suggesting that pressure has greater influence on kinetics when oxygen is reduced. The integrated OH1 signal strength remained constant at 3% coflow O2, despite an apparent increase in flame width, suggesting a spatial broadening of the flame with pressure. Numerical results indicate that at 3–6% O2, conditions for MILD combustion of H2 are met across a wide range of strains and pressures, supporting the experimental observations for 3% O2.  相似文献   

11.
A future economy based on reduction of carbon-based fuels for power generation and transportation may consider hydrogen as possible energy carrier. Extensive and widespread use of hydrogen might require a pipeline network. The alternatives might be the use of the existing natural gas network or to design a dedicated network. Whatever the solution, mixing hydrogen with natural gas will modify the consequences of accidents, substantially. The French National Research Agency (ANR) funded project called HYDROMEL focuses on these critical questions. Within this project large-scale jet fires have been studied experimentally and numerically. The main characteristics of these flames including visible length, radiation fluxes and blowout have been assessed.  相似文献   

12.
The explosion process of multi-component gas mixture is extremely complex and may cause serious disaster effects. The safety issue concerning explosion of multi-component gas mixture is urgent to be investigated on account of its wide range of applications. In current work, series of experiments were performed in a 20 L spherical explosion vessel at initial conditions of 1 atm and 293 K, involving methane–hydrogen/air mixtures. The proportion of hydrogen in fuels varied from 0% to 100%. It was observed that peak temperature is always behind the peak pressure in arrival time whatever the fuel equivalence is. Experimental values of peak overpressure are lower than adiabatic ones due to heat loss. It was also founded that the hydrogen addition can raise explosion pressure and temperature in experiment but slightly decrease that in adiabatic condition, and both the increase in experiment and the decrease in adiabatic show a linear correlation versus the proportion of hydrogen. Hence the deviation between the experimental results and the adiabatic results decreases as the hydrogen proportion rises. Moreover, the positive effect of hydrogen addition on (dp/dt)max is very slight at low hydrogen proportion, while the effect becomes much more pronounced at higher hydrogen contents, showing an exponential growth. For each fuel composition throughout all experiments, the peak overpressure, peak temperature and (dp/dt)max concerning fuel equivalence ratios of 0.6, 1 and 1.5 follow a same rule: Ф = 1 is the highest, followed by Ф = 1.5 and Ф = 0.6. Finally, the MIEs of gaseous methane–hydrogen/air mixtures at a fuel equivalence ratio of 1.5 were measured as a function of hydrogen proportion. It shows a sharp decrease as the fraction of hydrogen in fuel rises, from 118 mJ for methane–air to 0.12 mJ for hydrogen–air. It is also observed that the MIE of multi-component gas mixtures can be approximately figured as the linear weighted sum of the MIE of each component; the weighting factor is respectively the volume fraction of each component. This can be considered as a universal method to obtain the MIE for a specific multi-component gas.  相似文献   

13.
In order to quantitatively understand the wasteful and combustible gas resources which are released from underground coal fires caused by spontaneous combustion, the emission characteristics of hydrogen and methane in the thermochemical process of coal oxidation are investigated by both laboratory tests and on-site measurements. Employing an adiabatic oxidation test, the releasing rules of index gases in limited space were estimated with programmed temperature rising up to 200 °C. Experimental results demonstrate that the releasing concentrations of methane and hydrogen preform an exponential trend with oxidation temperature, while the release rates are significantly influenced by the metamorphic degrees and oxygen supplement conditions. Field survey was also operated to trace the gaseous products in a typical coal fire area in Xinjiang Region, China via gas monitoring at surface emission vents and fractures. Measurement data illustrate a good consistency between the index gases and the stage of coal spontaneous combustion, and the exhaust hydric gases are estimated at more than 1000 tons per year. The presented method and results could provide a useful reference to gaseous products estimation for coal spontaneous combustion.  相似文献   

14.
The combustion process of a four-stroke optically accessible single cylinder Port Fuel Injection spark ignition (PFI SI) engine was experimentally investigated. It was fueled with two methane/hydrogen blends. The in-cylinder pressure and the related data were analyzed as indicators of the combustion quality. 2D-digital imaging measurements were performed to evaluate the flame propagation. UV–visible spectroscopy allows to characterize the combustion by means of the detection of OH* and CH*. The exhaust was characterized using conventional analyzers. For the methane/hydrogen blends the indicated data suggests an increase of the thermal efficiency and a decrease of the combustion duration with the increase of the hydrogen fraction. The optical results highlight a more homogeneous mixture that increases the combustion reaction rate and provides a more uniform and rapid flame propagation. On the other hand, high NOx emissions were measured likely because of the higher combustion temperature due to hydrogen addition.  相似文献   

15.
A possible consequence of pressurized hydrogen release is an under-expanded jet fire. Knowledge of the flame length, radiative heat flux as well as the effects of variations in ground reflectance is important for safety assessment. The present study applies an open source CFD code FireFOAM to study the radiation characteristics of hydrogen and hydrogen/methane jet fires. For combustion, the eddy dissipation concept for multi-component fuels recently developed by the authors in the large eddy simulation (LES) framework is used. The radiative heat is computed with the finite volume discrete ordinates model in conjunction with the weighted sum of grey gas model for the absorption/emission coefficient. The pseudo-diameter approach is used in which the corresponding parameters are calculated using the formulations of Birch et al. [24] with the thermodynamic properties corrected by the Able-Noble equation of state. The predicted flame length and radiant fraction are in good agreement with the measurements of Schefer et al. [2], Studer et al. [3] and Ekoto et al. [6]. In order to account for the effects of variation in ground surface reflectance, the emissivity of hydrogen flames was modified following Ekoto et al. [6]. Four cases with different ground reflectance are computed. The predictions show that the ground surface reflectance only has minor effect on the surface emissive power of the smaller hydrogen jet fire of Ekoto et al. [6]. The radiant fractions fluctuate from 0.168 to 0.176 close to the suggested value of 0.16 by Ekoto et al. [6] based on the analysis of their measurements.  相似文献   

16.
In order to study the influence of nitrogen on the deflagration characteristics of premixed hydrogen/methane, the explosion parameters of premixed hydrogen/methane within various volume ratios and different dilution ratios were studied by using a spherical flame method at room temperature and pressure. The results are as follows: The addition of nitrogen makes the upper limit of explosion of hydrogen/methane premixed gas drop, and the lower limit rises. For explosion hazard (F-number), hydrogen/methane premixed fuel with a hydrogen addition ratio of 10% has the lowest risk, and nitrogen has a greater impact on the dangerous degree of hydrogen and methane premixed gas whose hydrogen addition ratio does not exceed 30%. In terms of flame structure, the spherical flame was affected by buoyancy instability as the percentage of nitrogen dilution increased, but the buoyancy instability gradually decreased as the percentage of hydrogen addition increased. The addition of diluent gas reduces the spreading speed of the stretching flame and reduces the stretching rate in the initial stage of flame development. The laminar flame propagation velocity calculated by the experiment in this paper is consistent with the laminar flow velocity of the hydrogen/methane premixed gas calculated by GRI Mech 3.0. Considering the explosion parameters such as flammability limit, laminar combustion rate and deflagration index, when hydrogen is added to 70%, it is the turning point of hydrogen/methane premixed fuel.  相似文献   

17.
Experimental and numerical study on the lean methane–hydrogen–air flames at elevated pressures and temperatures was conducted. The unstretched laminar burning velocities and Markstein lengths were obtained over a wide range of hydrogen fractions at elevated pressures and temperatures. The sensitivity analysis and flame structure were also analyzed. The results show good agreement between the computed results and experimental data. The unstretched laminar burning velocities are increased with the increase of initial temperature and hydrogen fraction, and they are decreased with the increase of initial pressure. With the increase of initial pressure and hydrogen fraction, Markstein lengths are decreased, indicating the increase of flame instability. Laminar burning velocity is depended on the competition between the main chain branching reaction and chain recombination reaction. The chain branching reaction is a temperature-sensitive reaction, while the recombination reaction is a temperature-insensitive reaction. Numerical study shows that the suppression (or enhancement) of overall chemical reaction with the increase of initial pressure (or temperature) is closely linking to the decrease (or increase) of H, O and OH mole fractions in the flames. Strong correlation is existed between burning velocity and maximum radical concentrations of H and OH radicals in the reaction zone of premixed flames.  相似文献   

18.
The present study investigated the effect of adding hydrogen to methane on the thermal characteristics and ignition delay in methane-air, oxygen-enriched and oxy-fuel MILD combustion. For this purpose, numerical simulation of MILD furnace is performed by k-ε turbulence, modified EDC combustion, and DO radiation models. Additionally, a well stirred reactor (WSR) analysis alongside with CFD simulations is used for getting the better insight of combustion process and numerical results. The results show that H2 addition to CH4 provides a more uniform temperature field with higher peak and average temperatures under a similar oxidizer atmosphere. Also, more ignition delay time (IDT) obtained by the replacement of CO2 with N2, can be compensated by consideration of H2 in the fuel composition. This study implies that the use of H2 as an additive to methane is an effective strategy for conversion of methane-air to oxy-fuel combustion system with almost identical thermal and ignition characteristics.  相似文献   

19.
A series of experiments were conducted to study the pressure and combustion characteristics of the high-pressure hydrogen during the occurrence of spontaneous ignition and the conversion from spontaneous ignition to a jet fire and explosion. Different initial conditions including release pressure (4–10 MPa), tube diameter (10/15 mm), and tube length (0.3/0.7/1.2/1.7/2.2/3 m) were tested. The variation of the pressure and flame signal inside and outside of the tube and the development of the jet flame were recorded. The experimental results revealed that the minimum ignition pressure required for self-ignition of hydrogen at different tube diameters decreased first and then increased with the extension of tubes. The minimum ignition pressure for tubes diameters of 10 mm and 15 mm is no more than 4 MPa and the length of the tubes is L = 1.7 m. The minimum release pressure required for spontaneous ignition of a tube D = 15 mm is always lower than that of a tube D = 10 mm at the same tube length. When the spontaneous ignition occurred, it did not absolutely trigger the jet fire. The transition from spontaneous ignition to a jet fire must go through the specific stages.  相似文献   

20.
Hydrogen has many excellent combustion properties that can be used for improving combustion and emissions performance of gasoline-fueled spark ignition (SI) engines. In this paper, an experimental study was carried out on a four-cylinder 1.6 L engine to explore the effect of hydrogen addition on enhancing the engine lean operating performance. The engine was modified to realize hydrogen port injection by installing four hydrogen injectors in the intake manifolds. The injection timings and durations of hydrogen and gasoline were governed by a self-developed electronic control unit (DECU) according to the commands from a calibration computer. The engine was run at 1400 rpm, a manifold absolute pressure (MAP) of 61.5 kPa and various excess air ratios. Two hydrogen volume fractions in the total intake of 3% and 6% were applied to check the effect of hydrogen addition fraction on engine combustion. The test results showed that brake thermal efficiency was improved and kept roughly constant in a wide range of excess air ratio after hydrogen addition, the maximum brake thermal efficiency was increased from 26.37% of the original engine to 31.56% of the engine with a 6% hydrogen blending level. However, brake mean effective pressure (Bmep) was decreased by hydrogen addition at stoichiometric conditions, but when the engine was further leaned out Bmep increased with the increase of hydrogen addition fraction. The flame development and propagation durations, cyclic variation, HC and CO2 emissions were reduced with hydrogen addition. When excess air ratio was approaching stoichiometric conditions, CO emission tended to increase with the addition of hydrogen. However, when the engine was gradually leaned out, CO emission from the hydrogen-enriched engine was lower than the original one. NOx emissions increased with the increase of hydrogen addition due to the raised cylinder temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号