首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Currently, magnesium hydride (MgH2) as a solid-state hydrogen storage material has become the subject of major research owing to its good reversibility, large hydrogen storage capacity (7.6 wt%) and affordability. However, MgH2 has a high decomposition temperature (>400 °C) and slow desorption and absorption kinetics. In this work, BaMnO3 was synthesized using the solid-state method and was used as an additive to overcome the drawbacks of MgH2. Interestingly, after adding 10 wt% of BaMnO3, the initial desorption temperature of MgH2 decreased to 282 °C, which was 138 °C lower than that of pure MgH2 and 61 °C lower than that of milled MgH2. For absorption kinetics, at 250 °C in 2 min, 10 wt% of BaMnO3-doped MgH2 absorbed 5.22 wt% of H2 compared to milled MgH2 (3.48 wt%). Conversely, the desorption kinetics also demonstrated that 10 wt% of BaMnO3-doped MgH2 samples desorbed 5.36 wt% of H2 at 300 °C within 1 h whereas milled MgH2 only released less than 0.32 wt% of H2. The activation energy was lowered by 45 kJ/mol compared to that of MgH2 after the addition of 10 wt% of BaMnO3. Further analyzed by using XRD revealed that the formation of Mg0·9Mn0·1O, Mn3O4 and Ba or Ba-containing enhanced the performance of MgH2.  相似文献   

3.
Metal-organic framework's (MOF) shortcomings, such as poor conductivity, poor stability, and easy aggregation, impede its development in various application fields. Ni/Mo2C/Mo2TiC2Tx@NC, a high-performance electrocatalyst for hydrogen evolution reaction, was prepared by incorporating a Mo2TiC2Tx MXene conductive matrix into MOF (namely C–Y). The Ni/Mo2C/Mo2TiC2Tx@NC electrocatalyst demonstrates a remarkable HER ability with an overpotential of 105 and 134 mV and Tafel slope of 58 and 75 mV dec−1 at a current density of 10 mA cm−2 in 0.5 M H2SO4 and 1.0 M KOH, respectively. The outperformed HER activity of Ni/Mo2C/Mo2TiC2Tx@NC catalyst is ascribe to the introduction of conductive Mo2TiC2Tx MXene as a carrier to improve the poor conductivity of MOF, the synergistic effect of Ni and Mo2C nanoparticles, and the protective effect of the carbon layer. The work not only provides an experimental approach to address the problem of poor conductivity of MOF, but also provides a high-performance electrocatalyst for HER reactions. By utilizing MOFs and MXene as the precursor and the conducting carrier, our work provides some experimental reference for fabrication of multi-component inexpensive electrocatalysts.  相似文献   

4.
A multiscale theoretical technique is used to examine the combination of different approaches for hydrogen storage enhancement in metal-organic frameworks at room temperature and high pressure by implementation lithium atoms in linkers. Accurate MP2 calculations are performed to obtain the hydrogen binding sites and parameters for the following grand canonical Monte Carlo (GCMC) simulations. GCMC calculations are employed to obtain the hydrogen uptake at different thermodynamic conditions. The results obtained demonstrate that the combination of different approaches can improve the hydrogen uptake significantly. The hydrogen content reaches 6.6 wt% at 300 K and 100 bar satisfying DOE storage targets (5.5 wt%).  相似文献   

5.
The nanoscaled Ni-based compounds (Ni3C, Ni3N, NiO and Ni2P) are synthesized by chemical methods. The MgH2-X (X = Ni3C, Ni3N, NiO and Ni2P) composites are prepared by mechanical ball-milling. The dehydrogenation properties of Mg-based composites are systematically studied using isothermal dehydrogenation apparatus, temperature-programmed desorption system and differential scanning calorimetry. It is experimentally confirmed that the dehydrogenation performance of the Mg-based materials ranks as following: MgH2Ni3C, MgH2Ni3N, MgH2NiO and MgH2Ni2P. The onset dehydrogenation temperatures of MgH2Ni3C, MgH2Ni3N, MgH2NiO and MgH2Ni2P are 160 °C, 180 °C, 205 °C and 248 °C, respectively. The four Mg-based composites respectively release 6.2, 4.9, 4.1 and 3.5 wt% H2 within 20 min at 300 °C. The activation energies of MgH2Ni3C, MgH2Ni3N, MgH2NiO and MgH2Ni2P are 97.8, 100.0, 119.7 and 132.5 kJ mol?1, respectively. It' found that the MgH2Ni3C composites exhibit the best hydrogen storage properties. Moreover, the catalytic mechanism of the Ni-based compounds is also discussed. It is found that Ni binding with low electron-negativity element is favorable for the dehydrogenation of the Mg-based composites.  相似文献   

6.
Hydrogen storage in nanoporous materials has been attracting a great deal of attention in recent years, as high gravimetric H2 capacities, exceeding 10 wt% in some cases, can be achieved at 77 K using materials with particularly high surface areas. However, volumetric capacities at low temperatures, and both gravimetric and volumetric capacities at ambient temperature, need to be improved before such adsorbents become practically viable. This article therefore discusses approaches to increasing the gravimetric and volumetric hydrogen storage capacities of nanoporous materials, and maximizing the usable capacity of a material between the upper storage and delivery pressures. In addition, recent advances in machine learning and data science provide an opportunity to apply this technology to the search for new materials for hydrogen storage. The large number of possible component combinations and substitutions in various porous materials, including Metal-Organic Frameworks (MOFs), is ideally suited to a machine learning approach; so this is also discussed, together with some new material types that could prove useful in the future for hydrogen storage applications.  相似文献   

7.
Using a deposition-reduction method, Mg/MOF nanocomposites were prepared as composites of Mg and metal-organic framework materials (MOFs = ZIF-8, ZIF-67 and MOF-74). The addition of MOFs can enhance the hydrogen storage properties of Mg. For example, within 5000 s, 0.6 wt%, 1.2 wt%, 2.7 wt%, 3.7 wt% of hydrogen were released from Mg, Mg/MOF-74, Mg/ZIF-8, Mg/ZIF-67, respectively. Activation energy values of 198.9 kJ mol−1 H2, 161.7 kJ mol−1 H2, 192.1 kJ mol−1 H2 were determined for the Mg/ZIF-8, Mg/ZIF-67, Mg/MOF-74 hydrides, which are 6 kJ mol−1 H2, 43.2 kJ mol−1 H2, and 12.8 kJ mol−1 H2 lower than that of Mg hydride, respectively. Moreover, the cyclic stability characterizing Mg hydride was significantly improved when adding ZIF-67. The hydrogen storage capacity of the Mg/ZIF-67 nanocomposite remained unchanged, even after 100 cycles of hydrogenation/dehydrogenation. This excellent cyclic stability may have resulted from the core-shell structure of the Mg/ZIF-67 nanocomposite.  相似文献   

8.
In this work, we have investigated the hydrogen release and uptake pathways storage properties of the MgH2Na3AlH6 with a molar ratio of 4:1 and doped with 10 wt% of TiF3 using a mechanical alloying method. The doped composite was found to have a significant reduction on the hydrogen release temperature compared to the un-doped composite based on the temperature-programme-desorption result. The first stage of the onset desorption temperature of MgH2Na3AlH6 was reduced from 170 °C to 140 °C with the addition of the TiF3 additive. Three dehydrogenation steps with a total of 5.3 wt% of released hydrogen were observed for the 4MgH2Na3AlH6-10 wt% TiF3 composite. The re/dehydrogenation kinetics of 4MgH2Na3AlH6 system were significantly improved with the addition of TiF3. Kissinger analyses showed that the apparent activation energy, EA, of the 4MgH2Na3AlH6 doped composite was 124 kJ/mol, 16 kJ/mol and 34 kJ/mol lower for un-doped composite and the as-milled MgH2, respectively. It was believed that the enhancements of the MgH2Na3AlH6 hydrogen storage properties with the addition of TiF3 were due to formation of the NaF, the AlF3 and the Al3Ti species. These species may played a synergetic catalytic role in improving the hydrogenation properties of the MgH2Na3AlH6 system.  相似文献   

9.
Additive doping is one of the effective methods to overcome the shortcomings of MgH2 on the aspect of relatively high operating temperatures and slow desorption kinetics. In this paper, hollow g-C3N4 (TCN) tubes with a diameter of 2 μm are synthesized through the hydrothermal and high-temperature pyrolysis methods, and then nickel is chemically reduced onto TCN to form Ni/TCN composite at 278 K. Ni/TCN is then introduced into the MgH2/Mg system by means of hydriding combustion and ball milling. The MgH2–Ni/TCN composite starts to release hydrogen at 535 K, which is 116 K lower than the as-milled MgH2 (651 K). The MgH2–Ni/TCN composite absorbs 5.24 wt% H2 within 3500 s at 423 K, and takes up 3.56 wt% H2 within 3500 s, even at a temperature as low as 373 K. The apparent activation energy (Ea) of the MgH2 decreases from 161.1 to 82.6 kJ/mol by the addition of Ni/TCN. Moreover, the MgH2–Ni/TCN sample shows excellent cycle stability, with a dehydrogenation capacity retention rate of 98.0% after 10 cycles. The carbon material enhances sorption kinetics by dispersing and stabilizating MgH2. Otherwise, the phase transformation between Mg2NiH4 and Mg2NiH0.3 accelerates the re/dehydrogenation reaction of the composite.  相似文献   

10.
Magnesium-based hydrogen storage materials (MgH2) are promising hydrogen carrier due to the high gravimetric hydrogen density; however, the undesirable thermodynamic stability and slow kinetics restrict its utilization. In this work, we assist the de/hydrogenation of MgH2 via in situ formed additives from the conversion of an MgNi2 alloy upon de/hydrogenation. The MgH2–16.7 wt%MgNi2 composite was synthesized by ball milling of Mg powder and MgNi2 alloy followed by a hydrogen combustion synthesis method, where most of the Mg converted to MgH2, and the others reacted with the MgNi2 generating Mg2NiH4, which produced in situ Mg2Ni during dehydrogenation. Results showed that the Mg2Ni and Mg2NiH4 could induce hydrogen absorption and desorption of the MgH2, that it absorbed 2.5 wt% H2 at 473 K, much higher than that of pure Mg, and the dehydrogenation capacity increased by 2.6 wt% at 573 K. Besides, the initial dehydrogenation temperature of the composite under the promotion of Mg2NiH4 decreased greatly by 100 K, whereas it is 623 K for MgH2. Furthermore, benefiting from the catalyst effect of Mg2NiH4 during dehydrogenation, the apparent activation energy of the composite reduced to 73.2 kJ mol−1 H2 from 129.5 kJ mol−1 H2.  相似文献   

11.
Transition metal-based oxides have been proven to have a substantial catalytic influence on boosting the hydrogen sorption performance of MgH2. Herein, the catalytic action of Ni6MnO8@rGO nanocomposite in accelerating the hydrogen sorption properties of MgH2 was investigated. The MgH2 + 5 wt% Ni6MnO8@rGO composites began delivering H2 at 218 °C, with about 2.7 wt%, 5.4 wt%, and 6.6 wt% H2 released within 10 min at 265 °C, 275 °C, and 300 °C, respectively. For isothermal hydrogenation at 75 °C and 100 °C, the dehydrogenated MgH2 + 5 wt% Ni6MnO8@rGO sample could absorb 1.0 wt% and 3.3 wt% H2 in 30 min, respectively. Moreover, as compared to addition-free MgH2, the de/rehydrogenation activation energies for doped MgH2 composites were lowered to 115 ± 11 kJ/mol and 38 ± 7 kJ/mol, and remarkable cyclic stability was reported after 20 cycles. Microstructure analysis revealed that the in-situ formed Mg2Ni/Mg2NiH4, Mn, MnO2, and reduced graphene oxide synergically enhanced the hydrogen de/absorption properties of the Mg/MgH2 system.  相似文献   

12.
Titanium fluoride (TiF3) is doped into the reactive hydride composite of 2NaAlH4 + Ca(BH4)2 by ball milling to enhance the hydrogen storage properties of the composite system. NaAlH4 and Ca(BH4)2 phases were fully transformed to Ca(AlH4)2 and NaBH4 phases after the ball-milling process (6 h). Four major stages were discovered in the undoped and TiF3-doped system, which is corresponding to; (i) Ca(AlH4)2, (ii) CaAlH5, (iii) CaH2 and (iv) NaBH4, respectively. The addition of TiF3 to the studied composite resulted in both reduced decomposition temperature and enhanced sorption kinetics compared with the undoped composite. The onset desorption temperature was reduced from 125 °C to 60 °C for the first stage in the TiF3-doped composite, compared with the undoped composite. From differential scanning calorimetry analysis, the decomposition temperature for all stages has shifted to a lower temperature after doping with TiF3. The activation energy has greatly reduced by 63.6 and 21.9 kJ/mol for CaAlH5 and NaBH4 stages, respectively, as compared with the undoped 2NaAlH4 + Ca(BH4)2 composite. During the dehydrogenation process, the formation of new active species of Al3Ti together with CaF2 played a vital role in accelerating the reactions in 5 wt% TiF3 doped to the studied composite system.  相似文献   

13.
MgH2-based nanocomposites were synthesized by high-energy reactive ball milling (RBM) of Mg powder with 0.5–5 mol% of various catalytic additives (nano-Ti, nano-TiO2, and Ti4Fe2Ox suboxide powders) in hydrogen. The additives were shown to facilitate hydrogenation of magnesium during RBM and substantially improve its hydrogen absorption-desorption kinetics. X-ray diffraction analysis showed the formation of nanocrystalline MgH2 and hydrogenation of nano-Ti and Ti4Fe2Ox. The possible reduction of TiO2 during RBM in hydrogen was not observed, which is in agreement with lower hydrogenation capacity of the corresponding composite, 5.7 wt% for Mg + 5 mol% nano-TiO2 compared to 6.5 wt% for Mg + 5 mol% nano-Ti. Hydrogen desorption from the as-prepared composites was studied by Thermal Desorption Spectroscopy (TDS) in vacuum. A significant lowering of the hydrogen desorption temperature of MgH2 by 30–90 °C in the presence of the additives is associated with lowering activation energy from 146 kJ/mol for nanosized MgH2 down to 74 and 67 kJ/mol for MgH2 modified with nano-TiO2 and Ti4Fe2O0.3 additives, respectively. After hydrogen desorption at 300–350 °C, these materials are able to absorb hydrogen even at room temperature. It is shown that nano-structuring and addition of Ti-based catalysts do not decrease thermodynamic stability of MgH2. The thermodynamic parameters, obtained from hydrogen desorption isotherms for the Mg–Ti4Fe2O0.3 nanocomposite, ΔHdes = 76 kJ/mol H2 and ΔSdes = 138 J/K·mol H2, correspond to the reported literature values for pure polycrystalline MgH2. Hydrogen absorption-desorption characteristics of the composites with nano-Ti remain stable during at least 25 cycles, while a gradual decay of the reversible hydrogen capacity occurred in the case of TiO2 and Ti4Fe2Ox additives. Cycling stability of Mg/Ti4Fe2Ox was substantially improved by introduction of 3 wt% graphite into the composite.  相似文献   

14.
The search for efficient materials for onboard hydrogen storage applications is an emerging research field. Using density functional calculations, we demonstrate Zn substituted MgH2 as a potential material for hydrogen storage. We predicted the ground state crystal structure of ZnH2 which is found to be Pna21 (orthorhombic) structure with meta-stable behavior. The structural phase stability and phase transition of Mg1−xZnxH2 systems have been analyzed. The H site energy of Mg1−xZnxH2 systems is calculated to understand the hydrogen desorption process. Our calculations suggest that Zn substitution reduces the stability of MgH2, thereby it may reduce the decomposition temperature of MgH2. The band structure and density of states calculations reveal that the Mg1−xZnxH2 systems are insulators. The chemical bonding behavior of Mg1−xZnxH2 systems is established as iono-covalent in nature. Moreover, Zn substitution in MgH2 induces disproportionate MgH bonds which could also contribute the reduction in the decomposition temperature as well as H sorption kinetics.  相似文献   

15.
The development of non-precious and high-efficient electrocatalysts to enhance the activity and stability in alkaline media is impending for massive hydrogen and oxygen production. In this study, NiS2 nanoparticles array with ellipse-like topography was fabricated via simple hydrothermal and sulfurization treatment. The NiS2-400 featured with the unique loose stacking topographic architecture contributes to more exposed active sites, the smaller contact resistance between electrode/electrolyte, faster ion diffusion and electron transfer. As a result, NiS2-400 electrode requires only overpotentials of 116 and 178 mV to drive current densities of 10 and 50 mA cm?2 in 1.0 M KOH towards the hydrogen evolution reaction (HER), coupled with a Tafel slope of 93.0 mV dec?1. Moreover, the resultant NiS2-400 nanoparticles exhibit excellent electrochemical stability for more than 50 h. In addition, the density functional theory (DFT) calculation further confirms that the (200) facet acts as the predominant active site, contributing to the enhanced HER performance.  相似文献   

16.
Extensive researches are being conducted to improve the high dehydrogenation temperature and sluggish hydrogen release rate of magnesium hydride (MgH2) for better industrial application. In this study, LiNbO3, a catalyst composed of alkali metal Li and transition metal Nb, was prepared through a direct one-step hydrothermal synthesis, which remarkably improved the hydrogen storage performance of MgH2. With the addition of 6 wt% LiNbO3 in MgH2, the initial dehydrogenation temperature decreases from 300 °C to 228 °C, representing a drop of almost 72 °C compared to milled MgH2. Additionally, the MgH2-6 wt.% LiNbO3 composite can quickly release 5.45 wt% of H2 within 13 min at 250 °C, and absorbed about 3.5 wt% of H2 within 30 min at 100 °C. It is also note that LiNbO3 shows better catalytic effect compared to solely adding Li2O or Nb2O5. Furthermore, the activation energy of MgH2-6 wt.% LiNbO3 decreased by 44.37% compared to milled MgH2. The enhanced hydrogen storage performance of MgH2 is attributed to the in situ formation of Nb-based oxides in the presence of LiNbO3, which creates a multielement and multivalent chemical environment.  相似文献   

17.
Photocatalytic hydrogen production has been recognized as one of the most desirable approaches to overcome the worldwide energy and environmental issues. Here, novel sea urchin-like Zn0.5Cd0.5S and mesoporous TiO2 (M-TiO2) are designed, and a series of crown-like Zn0.5Cd0.5S/M-TiO2 composites with different contents of M-TiO2 are synthesized by hydrothermal method. The optimum hydrogen production rate of composites reaches 180.4 mmolh?1g?1 with the AQE up to 48.9% at 420 nm, which is 3.5 and 216 times that of pure Zn0.5Cd0.5S and the M-TiO2, respectively. The outstanding performance of optimized Zn0.5Cd0.5S/M-TiO2 composite prepared in this work exceeds most reported Cd-S-based catalysts. The improvement on the photocatalytic performance of composites is mainly due to the enlarged specific surface area, the exposure of more active sites, and the enhancement of the electron-hole separation efficiency.  相似文献   

18.
As a high-density solid-state hydrogen storage material, magnesium hydride (MgH2) is promising for hydrogen transportation and storage. Yet, its stable thermodynamics and sluggish kinetics are unfavorable for that required for commercial application. Herein, nickel/vanadium trioxide (Ni/V2O3) nanoparticles with heterostructures were successfully prepared via hydrogenating the NiV-based two-dimensional layered double hydroxide (NiV-LDH). MgH2 + 7 wt% Ni/V2O3 presented more superior hydrogen absorption and desorption performances than pure MgH2 and MgH2 + 7 wt% NiV-LDH. The initial discharging temperature of MgH2 was significantly reduced to 190 °C after adding 7 wt% Ni/V2O3, which was 22 and 128 °C lower than that of 7 wt% NiV-LDH modified MgH2 and additive-free MgH2, respectively. The completely dehydrogenated MgH2 + 7 wt% Ni/V2O3 charged 5.25 wt% H2 in 20 min at 125 °C, while the hydrogen absorption capacity of pure MgH2 only amounted to 4.82 wt% H2 at a higher temperature of 200 °C for a longer time of 60 min. Moreover, compared with MgH2 + 7 wt% NiV-LDH, MgH2 + 7 wt% Ni/V2O3 shows better cycling performance. The microstructure analysis indicated the heterostructural Ni/V2O3 nanoparticles were uniformly distributed. Mg2Ni/Mg2NiH4 and metallic V were formed in-situ during cycling, which synergistically tuned the hydrogen storage process in MgH2. Our work presents a facile interfacial engineering method to enhance the catalytic activity by constructing a heterostructure, which may provide the mentality of designing efficient catalysts for hydrogen storage.  相似文献   

19.
Energy is an essential requirement in our daily lives. Currently, most of our energy demands are fulfilled by fossil fuels. After 20 years, non-renewable fossil fuels are estimated to plummet rapidly. The world will face energy shortage and will seek for a new environmental method of energy generation for transportation, economy and application. Hydrogen is a fascinating energy carrier that is considered as ‘hydrogen economy’ for the future. The key challenge in developing the hydrogen economy is the context of hydrogen storage. Storing hydrogen via the solid-state method has received special attention and consideration because of its safety and larger storage capacity. A light complex hydride, NaAlH4, is considered as an attractive material for solid-state hydrogen storage owing to its high hydrogen capacity, bulk in availability and low cost. Sluggish sorption kinetics and poor reversibility have driven research into various catalysts to enhance its hydrogen storage properties. This review article examines the development of different catalysts and their effects on the hydrogen storage properties of NaAlH4. The addition of catalyst offers synergistic catalytic effect on the dehydrogenation performance of NaAlH4. Doping NaAlH4 with catalyst promote promising results such as lower decomposition temperature, improved kinetics and reduced activation energy. Superior performance on the dehydrogenation performance of NaAlH4 doping with the catalyst may be due to the nanosized catalyst particle and in situ formed active species that may serve as nucleation sites at the surface of the NaAlH4 matrix and benefiting the kinetics properties of NaAlH4.  相似文献   

20.
Series of Pt-loaded graphene oxide (GO)/HKUST-1 composites were synthesized by the reaction between Pt@GO and precursors of HKUST-1. The parent materials and composites have been characterized by powder X-ray diffraction (XRD), Infrared (IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and gas adsorption analyzer. The XRD and IR analysis showed that the incorporation of Pt@GO did not prevent the formation of HKUST-1 units. SEM, TEM and EDS results revealed that Pt nanoparticles were well-dispersive and anchored tightly into composites. Meanwhile, the percentage of Pt@GO has an obvious effect on morphologies, crystallinities and surface areas of composites. More importantly, the significant enhancement of hydrogen storage capacity at ambient temperature for the composite with low Pt@GO content can be ascribed to the hydrogen spillover mechanism in such system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号