首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A two-bed PSA purifier was developed to produce high purity hydrogen for fuel cell applications. Two types of hydrogen-rich mixtures produced from coal off-gas were used. Feed 1 consisted of a 99% H2 mixture (H2:CO:CO2:N2 = 99:0.1:0.05:0.85 vol.%) containing 0.1% CO while Feed 2 was a 95% H2 mixture (H2:CO:CO2:CH4:N2 = 95:0.3:0.1:0.05:4.55 vol.%) containing 0.3% CO. An increase in the P/F ratio and adsorption pressure led to an almost linear decrease in H2 recovery with increasing purity. However, a sharp drop in CO concentration occurred at a specific operating range in both feeds. The feed was purified to 1.1 ppm CO with 99.99+% H2 purity and 80.0% recovery under 6.5 bar and 0.15 P/F ratio while CO in Feed 2 could be reduced to 6.7 ppm with 99.96% H2 purity and 78.4% recovery. The PVSA process, which combined vacuum and purge steps, could improve recovery by about 10% compared to the PSA process.  相似文献   

2.
The production of hydrogen through conventional pathways and recovery from by-products typically utilize pressure swing adsorption (PSA) technology as final purification step. Dual-layered PSA columns packed with conventional activated carbon and molecular sieve 5A material exhibit relatively low selectivity for O2, N2 and CO in particular. Therefore, eliminating CO (and other poisons) using conventional PSA to acceptable concentrations for EHP/C is only achievable with lower recovery rates. To improve recovery rates, there is a need for a highly efficient purification process that is highly selective for these hydrogen contaminants without compromising the product quality. Here we report an optimization study where vacuum PSA (VPSA) and electrochemical hydrogen purification and compression (EHP/C) technology is utilized for purification and compression of hydrogen from Coke Oven Gas (COG). The VPSA columns were packed with activated carbon and CuCl(7.0)-activated carbon to selectively retain poisonous CO2 and CO, respectively. The optimal operating conditions were determined with surrogate models produced via non-linear regression of known sample input-output data points, by varying the adsorbent layering ratio (0.30–0.84), adsorption pressure (0.38–0.78 MPa), purge to feed ratio (P/F-ratio) (1–10%), adsorption step time (100–1500 s) and the EHP/C stack current per cell (37–52 A) in the original models. The two-bed VPSA system obtained 90.5% recovery and retained CO and CO2 below their thresholds at 0.84 layering ratio, 0.78 MPa adsorption pressure, 840s adsorption time and 5.3% P/F-ratio, at the expense of H2 purity (77.1%) by breakthrough of CH4, N2 and O2. Hydrogen purity was upgraded to >99.999% by EHP/C, which recovered 90.0% of hydrogen and simultaneously compressed to 20 MPa, which required 3.2 kWh/kg H2. The overall VPSA-EHP/C recovery rate in this configuration was 81.5%. By utilizing the EHP/C retentate gas as VPSA purge gas, overall VPSA-EHP/C recovery rates may reach 87.3% and consume less energy due to a decrease in adsorption pressure. We show that adsorption columns designed to function as poisonous component eliminator are an effective strategy to pre-condition hydrogen synthesis gases prior to further processing with EHP/C. Although the EHP/C was exposed to significant concentrations of methane, nitrogen and oxygen by their advancement through VPSA, the performance was only slightly affected. The VPSA-EHP/C method is applicable to a wide range of hydrogen gas mixtures that require further purification and compression. Traditional PSA for purification from primary and by-product (COG, annealing, chlor-alkali and flat/float glass manufacturing) hydrogen sources can be changed to a VPSA-EHP/C systems for hydrogen purification and simultaneous compression.  相似文献   

3.
Adsorption of CO and CO2 in mixtures of H2/CO/CO2 was achieved using compact pressure swing adsorption (CPSA) system to produce purified hydrogen for use in fuel cell. A CPSA system was designed by combining four adsorption beds that simultaneously operate at different processes in the pressure swing adsorption (PSA) process cycle. The overall diameter of the cylindrical shell of the CPSA is 35 cm and its height is 40 cm. Several suitable adsorbent materials for CO and CO2 adsorption in a hydrogen stream were identified and their adsorption properties were tested. Activated carbon from Sigma–Aldrich was the adsorbent chosen. It has a surface area of 695.07 m2/g. CO adsorption capacity (STP) of 0.55 mmol/g and CO2 at 2.05 mmol/g were obtained. The CPSA system has a rapid process cycle that can supply hydrogen continuously without disruption by the regeneration process of the adsorbent. The process cycle in each column of the CPSA consists of pressurization, adsorption, blowdown and purging processes. CPSA is capable of reducing the CO concentration in a H2/CO/CO2 mixture from 4000 ppm to 1.4 ppm and the CO2 concentration from 5% to 7.0 ppm CO2 in 60 cycles and 3600 s. Based on the mixture used in the experimental work, the H2 purity obtained was 99.999%, product throughput of 0.04 kg H2/kg adsorbent with purge/feed ratio was 0.001 and vent loss/feed ratio was 0.02. It is therefore concluded that the CPSA system met the required specifications of hydrogen purity for fuel cell applications.  相似文献   

4.
A two-stage hydrogen purification process based on pressure swing adsorption (PSA) and CO selective methanation (CO-SMET) is proposed to meet the stringent requirements of H2-rich fuel for kW-scale skid-mounted or distributed proton exchange membrane fuel cell systems. The reforming gas is purified using dynamic adsorption model of PSA with activated carbon for initial purification and then kinetic model of CO-SMET with 50 wt% Ni/Al2O3 for CO deep removal. Sensitive analyses of the gas hourly space velocity, adsorption time and adsorption pressure etc. are studied. The results show that excellent H2 purity and CO concentration below 1000 ppm for the initial target using the three-bed and four-bed PSA system at shorter adsorption time and higher pressure, and then CO concentration below 10 ppm with H2 purity over 99.94% on CO-SMET. This work provides a small-scale and hydrogen-saving process for hydrogen purification can be achieved by the two-stage process.  相似文献   

5.
The thermodynamic analysis of steam reforming of methanol without and with fractional removal of H2 and CO2 in adsorption, membrane and adsorption-membrane hybrid reactor systems to produce fuel cell grade H2 with minimal carbon formation is investigated. The results indicate that the removal of undesired CO2 by CO2 adsorbent is most effective process for the production of high purity H2 than H2 removal by membrane. However, the membrane is effective only above 30% H2 removal. It is possible to obtain H2 yield of 2.6 with negligibly small amount of CO and carbon formation at T = 405 K, P = 1 atm, 80% removal of CO2 and 100% methanol conversion. Identical results are achieved even at lower temperature of 345 K in adsorption-membrane hybrid reactor system at 80% removal of H2 and CO2. Thus high grade H2 can be produced by single step process and further processing to reduce CO by PROX reactor is not necessary.  相似文献   

6.
This paper introduces a novel Coke Oven Gas (COG) hydrogen purification/compression system based on the technologies of Pressure Swing Adsorption (PSA) and Electrochemical Hydrogen Purification and Compression (EHP/C). As the EHP/C tolerates O2, N2 and CH4 impurities, PSA can be utilized solely for CO and CO2 removal (other COG impurities were not considered in this work). A relaxation of PSA hydrogen purity could significantly enhance its recovery rate. In this study, the suitability of traditional hydrogen PSA as part of the hybrid PSA/EHP/C approach was investigated. Aspen Adsorption and Matlab were used to model the PSA and EHP/C systems, respectively. The effect of adsorption pressure, purge-to-feed-ratio (P/F-ratio) and adsorption time within cycle on PSA performance is reported. This study found that breakthrough of non-detrimental components is typically accompanied with poisonous CO. Hence, the CO removal with traditional H2-PSA resulted into high purity product. In a two-bed PSA, 36.3% of hydrogen was recovered at 99.9988% purity and 0.18 ppm CO. Subsequently, as a result, the EHP/C purification capability was merely utilized, but polished this hydrogen to >99.999% purity. Simultaneously, hydrogen was isothermally compressed to 20 MPa, consuming a marginal 2.42 kWh/kg. Compared to mechanical compression, this is 31.6% more energy efficient. Recovering hydrogen from by-product COG was found to save 0.5 kg CO2/kg H2 compared to hydrogen produced from natural gas. Conventional hydrogen PSA, utilizing 70% Activated Carbon and 30% Molecular Sieve 5A, was found not to be effective to target the removal of CO specifically. To increase synergy between PSA and EHP/C, the PSA requires adequate design and operation using appropriate adsorbents and cycle steps to target elimination of CO. An increased EHP/C catalyst tolerance for CO also contributes to higher flexibility.  相似文献   

7.
A two-stage pressure/vacuum swing adsorption (PSA/VSA) process was proposed to produce high purity H2 from steam methane reforming (SMR) gas and capture CO2 from the tail gas of the SMR-H2-PSA unit. Notably, a ten-bed PSA process with activated carbon and 5A zeolite was designed to produce 99.99+% H2 with over 85% recovery from the SMR gas (CH4/CO/CO2/H2 = 3.5/0.5/20/76 vol%). Moreover, a three-bed VSA system was constructed to recover CO2 from the tail gas using silica gel as the adsorbent. CO2 product with 95% purity and over 90% recovery could be attained. Additionally, the effects of various operating parameters on the process performances were investigated in detail.  相似文献   

8.
Pressure swing adsorption (PSA) is an important technology for mixture gas separation and purification. In this work, a dynamic model for a layered adsorption bed packed with activated carbon and zeolite 5A was developed and validated to study the PSA process. The model was validated by calculating breakthrough curves of a five-component gas mixture (H2/CH4/CO/N2/CO2 = 56.4/26.6/8.4/5.5/3.1 mol%) and comparing the results with available experimental data. The purification performance of six-step layered bed PSA cycle was studied using the model. In order to optimize the cycle, the Box-Behnken design (BBD) method was used, as implemented in Design Expert?. The parametric study showed that, for adsorption step durations ranging from 160 to 200 s, as the adsorption time increased, the purity decreased, whereas the recovery and productivity increased. During the pressure equalization step, the purity increased as the pressure equalization time increased, but the recovery and productivity decreased for step durations ranging from 10 to 30 s. As the P/F ratio (hydrogen used in purge step to hydrogen fed in adsorption step) increased from 0.05 to 0.125, the purity increased, whereas the recovery and productivity decreased. The optimization of the layered bed PSA process by the BBD method was then performed. In addition to the adsorption time, the pressure equalization time and the P/F ratio were considered as independent optimization parameters. Quadratic regression equations were then obtained for three responses of the system, namely purity, recovery, and productivity. When purity is set as the main performance indicator, the following values were obtained for the optimization parameters: an adsorption time of 168 s, a pressure equalization time of 14 s, and a P/F ratio of 0.11. Under those conditions, the system achieved a purity of 99.99%, a recovery of 57.76%, and a productivity of 6.41 mol/(kg·h).  相似文献   

9.
The concentration of CO in the high-purity hydrogen from sorption-enhanced steam reforming (SESR) processes is usually too high to be directly used in fuel cells. Herein, we report a production of fuel-cell grade H2 with <30 ppm CO through SESR of glycerol (SESRG), a by-product of biodiesel manufacture. High purity H2 can be produced by employing a catalyst-sorbent hybrid material composed of Ni as catalyst, CaO as CO2 sorbent and Ca12Al14O33 as spacer. By introducing copper as promoter, the performance of the bi-functional catalyst could be modified to produce a 97.15 vol% purity of H2 with 28 ppm CO. With an optimized Ni/Cu ratio, the 7.5Ni–7.5Cu catalyst shows the excellent stability for producing about 97% H2 with <30 ppm CO for ten cycles. The characterizations and model reaction tests indicate that copper can affect CO, CO2 hydrogenation and water gas shift reaction to adjust the performance of SESRG reaction. The results presented here show the promise of tuning the catalyst composition for achieving high quality H2 through SESR processes.  相似文献   

10.
The present study investigates the optimization of hydrogen (H2) production with in-situ catalytic adsorption (ICA) steam gasification by using a pilot-scale fluidized bed gasifier. Two important response variables i.e. H2 composition (in percent volume fraction, %) and H2 yield (in g kg−1 of biomass) are optimized with respect to five process variables such as temperature (600 °C–750 °C), steam to biomass mass ratio (1.5–2.5), adsorbent to biomass mass ratio (0.5–1.5), superficial velocity (0.15 m s−1–0.26 m s−1) and biomass particle size (350 μm–2 mm). The optimization study is carried out based on Response Surface Methodology (RSM) using Central Composite Rotatable Design (CCRD) approach. The adsorbent to biomass mass ratio is found to be the most significant process variables that influenced the H2 composition, whereas temperature and biomass particle size are found to be marginally significant. For H2 yield, temperature is the most significant process variables followed by steam to biomass mass ratio, adsorbent to biomass mass ratio and biomass particle size. The optimum process conditions are found to be at 675 °C, steam to biomass mass ratio of 2.0, adsorbent to biomass mass ratio of 1.0, superficial velocity of 0.21 m s−1 that is equivalent to 4 times the minimum fluidization velocity, and 1.0 mm–2.0 mm of biomass particle size. The theoretical response variables predicted by the developed model fit well with the experimental results.  相似文献   

11.
The application of LaNi5 based alloys as adsorbent for hydrogen separation and purification has been proposed for a long time. However, the actual utilization is limited by the poor CO tolerance of the alloys at atmospheric temperature. In this study, an elevated temperature vacuum pressure swing adsorption (ET-VPSA) method for H2 separation using hydrogen storage material LaNi4.3Al0.7 is proposed and demonstrated to be energy efficient. Elevating the working temperature results in improved CO tolerance of LaNi4.3Al0.7, making it possible for the alloy to be used in more situations. An ET-VPSA model was built to explore the correlations between product H2 purity, recovery rate, feed gas composition, cycle duration and counter-current blow down (CD) pressure. The results show that H2 recovery rate of ET-VPSA reaches 95% while it is usually 85% or lower for regular pressure swing adsorption (PSA). The energy efficiency of these two separation methods is evaluated by methanol reforming-proton exchange membrane fuel cell system models which contain PSA or ET-VPSA as H2 purification unit. A larger net power generation amount indicates less energy loss during H2 purification process. Although the vacuum pump will lead to extra energy consumption, benefiting from higher H2 recovery rate, the net efficiency of the system with ET-VPSA is 0.475, still higher than that with PSA (0.448).  相似文献   

12.
A dual-reflux pressure swing adsorption (DR-PSA) process was proposed and simulated to initially separate the blue coal gas, aiming to capture carbon dioxide (CO2) and enrich hydrogen (H2), simultaneously. With a feed flow rate of 7.290 slpm, a light product reflux flow rate of 0.505 slpm and the heavy product reflux flow rate of 3.68 slpm, the developed DR-PSA process could capture CO2 up to 64.01% with a recovery of 99.60% and enrich H2 up to 34.66% with a recovery of 97.63% from the blue coal gas (36.2% N2/28.5% H2/13.9% CO/12.7% CO2/8.7% CH4). In addition, in order to optimize the process, the effects of various operating parameters on the DR-PSA process performance in terms of product purity and recovery were discussed in detail, including the feed position, the light product reflux ratio and the heavy product reflux ratio. Moreover, the dynamic distribution behaviors of pressure, temperature and gas-solid concentration were presented to explain and evaluate the process separation performance in depth under different operating conditions.  相似文献   

13.
2% Rh–CeO2 catalyst was synthesized using the hard template method and characterized by means of N2 adsorption/desorption, XRD and H2-TPR methods. The prepared powdered catalyst exhibited high thermal stability and high surface area with negligible sintering during 24-h exposure to 973 K in an inert atmosphere. During the temperature programmed methane dry reforming reaction between 473 and 1073 K, an increase in the molar H2/CO ratio from 0.3 at 623 K to as high as 0.96 at 1073 K was observed. Besides H2 and CO, H2O was identified among reaction products, originating from the simultaneously occurring reverse water-gas shift reaction. During the isothermal test performed at 923 K, the 2% Rh–CeO2 catalyst exhibited stable performance and produced syngas with the average H2/CO ratio equal to 0.62. A relative drop of catalyst activity equal to 11% was observed within 70-h time on stream at 1023 K, with the average H2/CO ratio at the reactor outlet equal to 0.71.  相似文献   

14.
This study presents numerical studies of hydrogen production performance via water gas shift reaction in membrane reactor. The pre-exponential factor in describing the hydrogen permeation flux is used as the main parameter to account for the membrane permeance variation. The operating pressure, temperature and H2O/CO molar ratio are chosen in the 1–20 atm, 400–600 °C and 1–3 ranges, respectively. Based on the numerical simulation results three distinct CO conversion regimes exist based on the pre-exponential factor value. For low pre-exponential factors corresponding to low membrane permeance, the CO conversion approaches to that obtained from a conventional reactor without hydrogen removal. For high pre-exponential factor, high CO conversion and H2 recovery with constant values can be obtained. For intermediate pre-exponential factor range both CO conversion and H2 recovery vary linearly with the pre-exponential factor. In the high membrane permeation case CO conversion and H2 recovery approach limiting values as the operating pressure increases. Increasing the H2O/CO molar ratio results in an increase in CO conversion but decrease in H2 recovery due to hydrogen permeation driving force reduction. As the feed rate increases in the reaction side both the CO conversion and hydrogen recovery decrease because of decreased reactant residence time. The sweep gas flow rate has a significant effect on hydrogen recovery. Low sweep gas flow rate results in low CO conversion H2 recovery while limiting CO conversion and hydrogen recovery can be reached for the high membrane permeance and high sweep gas flow rate cases.  相似文献   

15.
2D SnO2 disks with excellent purity and crystallinity were synthesized through a low cost, facile hydrothermal process and were characterized in terms of their morphological, structural, optical and electrochemical properties. The 2D disk-like morphology of synthesized SnO2 presented the average thickness of ∼1 μm and possessed the typical rutile tetragonal phase for the SnO2 with preferred growth along (100) plane. As-synthesized SnO2 disks were used for the fabrication of gas sensors for reducing gases like H2, CO, and C3H8. With the optimized temperature at 400 °C, the as-synthesized SnO2 electrode expressed the gas responses of 14.7, 9.3 and 8.1 for H2, CO, and C3H8, respectively. Contrary, the reasonable response times of 4 s, 3 s, and 8 s and the recovery times of 331 s, 201 s, and 252 s were recorded for H2, CO, and C3H8 gases, respectively. The DFT studies conducted herein suggest that the adsorbed oxygenated species act as a primary redox mediator for gas sensing reaction between reductive gases like H2, CO and C3H8, and SnO2 sensor. From DFT analysis, a very low heat of adsorption (≤0.2 eV) estimated which suggested the physisorption of the H2 molecules on the surface of the sensing material (i.e. SnO2). In contrast, the deposited oxygen atom forms strong chemical bonds with O2c and O3c sites. The oxygen atom bonded to O2c site control the conductivity of the sensor better than the O3c sites.  相似文献   

16.
In recent years, there has been growing interest in the dry reforming of methane (using CO2 instead of H2O) to obtain syngas, due to its economic and environmental advantages. In this reaction, to achieve conversions close to 100%, it is necessary to work at temperatures higher than 1000 °C. However, to attenuate the catalyst deactivation by sintering is convenient to work at lower temperatures, so that normally the syngas (mixture CO + H2) is obtained mixed with unreacted CO2 and CH4. In this work a process has been simulated to recover the syngas from the product of a dry reforming reaction of methane at 700 °C by means of a Dual PSA (Dual Pressure Swing Adsorption) process with heavy reflux using BPL activated carbon as an adsorbent, operating at 25 °C. The process can recover syngas with purity and recovery higher than 99%. Unreacted CO2 and CH4 can be recycled to the reactor, leading to effective CO2 and CH4 conversions close to 100%. The process specific energy input (SEI) is 4.7 thermal kJ per L (STP) of syngas. The process can also be used to recover the syngas contained in the tail gas of a H2 purification PSA from SMR-off gas.  相似文献   

17.
Thermodynamic equilibrium for glycerol steam reforming to hydrogen with carbon dioxide capture was investigated using Gibbs free energy minimization method. Potential advantage of using CaO as CO2 adsorbent is to generate hydrogen-rich gas without a water gas shift (WGS) reactor for proton exchange membrane fuel cell (PEMFC) application. The optimal operation conditions are at 900 K, the water-to-glycerol molar ratio of 4, the CaO-to-glycerol molar ratio of 10 and atmospheric pressure. Under the optimal conditions, complete glycerol conversion and 96.80% H2 and 0.73% CO concentration could be achieved with no coke. In addition, reaction conditions for coke-free and coke-formed regions are also discussed in glycerol steam reforming with or without CO2 separation. Glycerol steam reforming with CO2 adsorption has the higher energy efficiency than that without adsorption under the same reaction conditions.  相似文献   

18.
By means of advanced techniques of molecular simulations, we have studied the chemical equilibrium of methane steam reforming reaction. We have computed the conversion of CH4, yield and selectivity of H2, etc. in the gas phase by reactive canonical Monte Carlo (RCMC) method and compared with those from Gibbs energy of formation method. The consistency of the two methods encourages us to use the RCMC method to optimize the operating conditions. We found that under low pressure 0.1 MPa, high temperature 1073 K and high water-gas ratio H2O/CH4 = 5, the CH4 conversion, H2 yield and selectivity were the highest, with the values of 99.93%, 3.51 mol/molCH4 and 99.98%, respectively. In addition, the pore size of activated carbon significantly affects the chemical equilibrium composition in the pores. Since low pressure and high temperature are not conducive to the adsorption of reactive components by activated carbon, the chemical balance in the pores cannot be improved. At 773 K, 3.0 MPa and pore width is less than 2 nm, the pores are mainly occupied by CH4 and H2O reactant molecules. Further increasing the temperature can increase the H2 content in the pores, but the adsorption capacity in the pores will decrease. We use activated carbon to adsorb and separate CO and H2 (CO:H2 = 1:3), the main components after the gas phase reaction reaches equilibrium. At 298 K, 7.5 MPa and the optimal pore width of 0.76 nm, the CO/H2 selectivity is 28.3 and the CO adsorption capacity is 8.45 mmol/cm3.  相似文献   

19.
Cu and Zn modified 13X zeolites prepared by ion exchange or impregnation and activated carbons (ACs) treated with KOH, NaOH or Na2CO3 solutions were studied as H2S sorbents for biogas purification for fuelling molten carbonate fuel cells. H2S sorption was studied in a new experimental set-up equipped with a high sensitivity potentiometric system for the analysis of H2S. Breakthrough curves were obtained at 40 °C with a fixed bed of 20 mg of the samples under a stream (6 L h−1) of 8 ppm H2S/He mixture. The adsorption properties of 13X zeolite improved with addition of Cu or Zn:Cu exchanged zeolite showed the best performances with a breakthrough time of 580 min at 0.5 ppm H2S, that is 12 times longer than the parent zeolite. In general, unmodified and modified ACs were more effective H2S sorbents than zeolites. Treating ACs with NaOH, KOH, or Na2CO3 solutions improved the H2S adsorption properties: AC treated with Na2CO3 was the most effective sorbent, showing a breakthrough time of 1222 min at 0.5 ppm, that is twice the time of the parent AC.  相似文献   

20.
The adsorption of CO and H2 on single-metal-atom (Fe, Co, Ni and Cu) embedded graphene (M-G) has been studied using density functional theory calculations. Fe-G and Co-G can capture up to three CO molecules per metal atom strongly, but tend to weakly or not adsorb H2 molecules. Under standard conditions (298.15 K and 1 bar), they show a high adsorption selectivity ratio for CO over H2. The density of states analysis reveals that the strong adsorption between CO and Fe(Co)-G results from the hybridization between d states of Fe (Co) and sp states of CO. Our findings suggest that Fe-G and Co-G can be used as a filter membrane for removing CO efficiently in the feed gas of hydrogen fuel cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号