首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
马铃薯片热风对流干燥模型与特性   总被引:1,自引:0,他引:1  
为了描述马铃薯片热风对流干燥的特性,在对流热风干燥试验装置中进行了马铃薯片薄层干燥试验,研究了干燥温度对干燥过程的影响,用数学模型关联了试验的水分比与时间,计算了不同温度下的水分有效扩散系数,并拟合了其与干燥温度的关系。结果表明:干燥温度对干燥过程有明显影响;在所用的模型中Logarithmic模型能较好地描述马铃薯片热风对流干燥过程;厚度3 mm的马铃薯片,在风速0.95 m/s时,风温从50℃升高到80℃,水分有效扩散系数从1.73×10~(-9) m~2/s增大到3.33×10~(-9) m~2/s,并符合阿累尼乌斯方程,活化能为20.16 kJ/mol。  相似文献   

2.
研究了菠菜在不同干燥温度、风速及物料堆积层数下的脉动式气体射流冲击干燥特性,建立了干燥动力学模型。试验表明:菠菜的干燥时间随干燥温度和风速的升高而减少、随物料堆积层数的增加而增加,整个干燥过程均为降速干燥;菠菜的水分有效扩散系数为(4.7190×10~(-12)~1.5619×10~(-11))m~2/s,干燥活化能为45.35 k J/mol;Midilli-Kucuk模型能很好地描述菠菜脉动式气体射流冲击干燥过程中水分比的变化规律。  相似文献   

3.
对稻谷进行薄层热风干燥,采用正交试验方法研究稻谷在不同热风温度、初始含水率和热风风速条件下的热风干燥特性,比较10种数学模型在稻谷热风干燥中的适用性。结果表明:稻谷在热风干燥过程中没有出现明显的恒速干燥阶段,且干燥主要发生在降速干燥阶段;热风温度是影响稻谷热风干燥的最主要因素,其次是初始含水率;取初始含水率20%、热风温度50℃、热风风速1.4 m/s的方案为稻谷的最优热风干燥工艺,此时的最佳数学模型为Page模型;缓苏可有效抑制稻谷的爆腰率,缓苏温度越高,缓苏时间越长,缓苏效果越好;当初始含水率24%、热风温度40℃时,实验值和模型值的相对平均误差分别为1.563%和1.474%,表明模型预测的干燥曲线和实验所得的干燥曲线一致性较好;随着热风温度的升高,稻谷的有效水分扩散系数变大,经热风温度从40℃升高到60℃,其有效水分扩散系数由9.69×10~(-10) m~2/s增加到10.77×10~(-10) m~2/s,稻谷的干燥活化能为47.1 k J/mol。  相似文献   

4.
为了研究油菜籽流化床干燥过程水分扩散规律,基于Fick第二定律和Arrhenius方程,通过开展油菜籽流化床干燥实验,分别考察了油菜籽初始含水率、热空气温度和热空气流速与水分比和水分有效扩散系数之间的变化规律。结果表明:随着油菜籽初始含水率、热空气温度和热空气流速逐渐增大,水分有效扩散系数增加,14.41%~29.72%初始含水率、1.75~2.25 m/s热空气流速及45~65℃热空气温度所对应的水分有效扩散系数范围分别为6.485×10~(-10)~10.133×10~(-10)m~2/s、7.296×10~(-10)~9.525×10~(-10)m~2/s和5.269×10~(-10)~8.917×10~(-10)m~2/s,其中29.72%初始含水率的水分有效扩散系数是14.41%的1.6倍,2.25 m/s热空气流速的水分有效扩散系数是1.75 m/s的1.3倍,65℃热空气温度的水分有效扩散系数是45℃的1.7倍。Arrhenius方程可以描述油菜籽流化床干燥水分扩散系数与温度的关系,水分扩散的平均活化能为22.84 kJ/mol;通过比较4种常见薄层干燥模型,发现油菜籽流化床干燥失水规律采用Page模型可进行准确模拟,其决定系数R~2≥0.997,相对误差≤5.4%。研究结果为提高干燥效率,优化干燥工艺参数提供参考。  相似文献   

5.
为了研究油菜籽流化床干燥过程水分扩散规律,基于Fick第二定律和Arrhenius方程,通过开展油菜籽流化床干燥实验,分别考察了油菜籽初始含水率、热空气温度和热空气流速与水分比和水分有效扩散系数之间的变化规律。结果表明:随着油菜籽初始含水率、热空气温度和热空气流速逐渐增大,水分有效扩散系数增加,14.41%~29.72%初始含水率、1.75~2.25 m/s热空气流速及45~65℃热空气温度所对应的水分有效扩散系数范围分别为6.485×10~(-10)~10.133×10~(-10)m~2/s、7.296×10~(-10)~9.525×10~(-10)m~2/s和5.269×10~(-10)~8.917×10~(-10)m~2/s,其中29.72%初始含水率的水分有效扩散系数是14.41%的1.6倍,2.25 m/s热空气流速的水分有效扩散系数是1.75 m/s的1.3倍,65℃热空气温度的水分有效扩散系数是45℃的1.7倍。Arrhenius方程可以描述油菜籽流化床干燥水分扩散系数与温度的关系,水分扩散的平均活化能为22.84 kJ/mol;通过比较4种常见薄层干燥模型,发现油菜籽流化床干燥失水规律采用Page模型可进行准确模拟,其决定系数R~2≥0.997,相对误差≤5.4%。研究结果为提高干燥效率,优化干燥工艺参数提供参考。  相似文献   

6.
本文以干燥特性、色泽、复水性以及抗坏血酸保留率为评价指标,研究了不同干燥温度(60、70、80、90℃)下中短波红外辐射和热风干燥对番木瓜片品质的影响。结果表明:与热风干燥相比,相同温度条件下中短波红外干燥速率更快,所需干燥时间更短;随着干燥温度的升高,两种干燥方式下的水分有效扩散系数均呈升高趋势,番木瓜片中短波红外干燥和热风干燥水分有效扩散系数分别为0.58546×10-10~9.87313×10-10 m2/s、0.01179×10-10~4.88646×10-10 m2/s;番木瓜片中短波红外干燥的活化能32.13 k J/mol低于热风干燥的活化能33.28 k J/mol;此外,中短波红外干燥后番木瓜片的色泽和产品的复水性更好,而番木瓜片的中短波红外干燥抗坏血酸保留率低于热风干燥。综合考虑,试验范围内中短波红外干燥温度为70℃条件下所得产品的品质最好。  相似文献   

7.
为了研究单粒莲子在不同温度(50、60、70、80、90℃)条件下热风干燥的干燥特性、水分扩散系数及活化能,利用Weibull函数及经验模型对单粒莲子干燥过程进行模拟分析。结果表明:Weibull函数和Midilli模型可以很好地拟合单粒莲子的热风干燥过程;尺度参数α随干燥温度的升高而减小(p0.05);干燥温度对形状参数β的影响较大(p0.05);计算得到干燥过程中估算的水分扩散系数为(8.79×10~(-9)~2.45×10~(-8))m~2/s,水分有效扩散系数为(4.73×10~(-10)~1.31×10~(-9))m~2/s,活化能为22.61 kJ/mol,水分扩散系数随温度的升高而增大。该研究为Weibull分布函数应用于莲子干燥提供参考。  相似文献   

8.
为了提高猕猴桃切片制干品质、缩短干燥时间,采用流化床干燥技术对其进行干燥,研究温度(55,65,75,85℃)、风速(1.5,2.5,3.5,4.5m/s)和厚度(5,10,15mm)对猕猴桃切片热风干燥曲线、水分有效扩散系数以及干燥活化能的影响。结果表明:猕猴桃切片的整个干燥过程属于降速干燥,水分有效扩散系数为1.29639×10-9~4.58994×10-9 m2/s,且随温度、风速的增大而升高,随切片厚度的减少而增大;猕猴桃切片活化能为23.03kJ/mol。对10种常见的干燥动力学模型进行拟合发现,Logarithmic模型效果最佳。  相似文献   

9.
为了探讨热风温度对百合热风干制动力学的影响,分别将百合鳞片和百合切丝置于65~85℃的热风干燥箱内进行干制处理,并采用5种常见食品薄层干燥模型对实验数据进行非线性拟合,通过比较评价决定系数(R~2)、卡方(χ~2)和均方根误差(RMSE)等统计数据确定百合薄层热风干燥过程的最优模型。结果表明:百合薄层热风干燥是内部水分扩散控制的降速干燥过程。Page模型是描述百合薄层热风干燥过程的最优模型。不同干燥条件下有效水分扩散系数D_(eff)和活化能Ea的求解结果表明,有效水分扩散系数Deff随热风温度升高而增加,在干制温度范围内,百合切丝有效扩散系数的值在7.73~14.12×10~(-9)m~2/s之间变化,而百合鳞片有效扩散系数的值在4.12~9.49×10~(-9)m~2/s之间变化。对于百合切丝和百合鳞片,活化能Ea分别为30.37和42.42 k J/mol。百合切丝干制能缩短干制时间,减少能量消耗。  相似文献   

10.
食用槟榔热风干燥特性及动力学模型   总被引:1,自引:0,他引:1       下载免费PDF全文
本文采用Fick第二扩散定律与槟榔干燥的数学模型研究了食用槟榔在不同干燥温度下的热风干燥特性、水分有效扩散系数、表观活化能等参数与干燥动力学方程之间的相互关系。结果表明:槟榔在70℃与75℃的干燥曲线有显著性差异(p0.05),槟榔热风干燥是内部水分扩散控制的降速干燥过程;槟榔水分扩散系数变化范围:青果Deff=6.45×10~(-9)~1.17×10~(-8) m~2/s,烟果Deff=7.47×10~(-9)~1.21×10~(-8) m~2/s;干燥表观活化能:青果Ea=30.32 kJ/mol,烟果Ea=23.38 kJ/mol。单项扩散模型与Page模型的常数项系数受温度影响显著(p0.05);单项扩散干燥模型为描述食用槟榔的最佳数学模型(青果:R2avg=0.97,RMSEavg=0.023;烟果:R2avg=0.98,RMSEavg=0.025);65℃~85℃热风干燥条件下的干燥模型可表述为:MR青果=(2×10~(-4)T2-0.037T+2.54)exp-(3×10~(-5)T3-0.0064T2+0.51T-13.06)t;MR烟果=(3×10~(-4)T2-0.062T+3.67)exp-(-4×10~(-4)T2+0.061T-2.027)t,可为其干燥工艺的控制提供技术依据。  相似文献   

11.
单粒莲子热风干燥特性及其干燥动力学   总被引:4,自引:3,他引:1       下载免费PDF全文
为了提高莲子干燥品质、缩短干燥时间并降低能耗,采用恒温和分段变温两种干燥方式对单粒莲子进行了50~90℃恒温和60(2~4 h)~80℃变温热风干燥试验,研究莲子表观变化、复水性、干燥能耗及干燥特性,计算不同干燥条件下的有效扩散系数和活化能。试验表明:在恒温干燥条件下,温度越高,干燥时间越短,而莲子色泽、复水性等品质则越差;在分段变温条件下,干燥时间较60℃恒温干燥缩短了,但品质均有所提高,60℃(3 h)~80℃变温干燥莲子的复水性优于60℃(2 h)~80℃和60℃(4 h)~80℃变温干燥,为169.41%,单位能耗比60℃恒温干燥减少2033 k J/g。根据菲克第二定律,得到莲子50~90℃恒温干燥有效扩散系数变化范围为1.79×10~(-9)~5.83×10~(-9) m~2/s,60℃(2~4 h)~80℃变温干燥平均有效扩散系数变化范围为2.97×10~(-9)~2.44×10~(-9) m~2/s。由Arrhenius方程建立有效扩散系数与温度的关系,得到莲子水分活化能为28.33 k J/mol。试验结果为莲子干燥工艺参数优化及干燥设备设计提供参考。  相似文献   

12.
在本研究中,为了探讨热风温度和切片厚度对山楂热风干制动力学的影响,将厚度为2 mm和4 mm的山楂切片置于50~90℃的热风干燥箱内进行干制处理,并采用5种常见食品薄层干燥模型对实验数据进行非线性拟合,通过比较评价决定系数(R~2)、卡方(χ~2)和均方根误差(RMSE)等统计数据确定山楂切片薄层热风干燥过程的最优模型。结果表明:山楂切片薄层热风干燥是内部水分扩散控制的降速干燥过程。Page模型是描述山楂切片薄层热风干燥过程的最优模型。不同干燥条件下有效水分扩散系数Deff和活化能Ea的求解结果表明,有效水分扩散系数Deff随热风温度和切片厚度的增加而增加,在干制温度范围内有效扩散系数的值在2.69×10~(-11)~16.12×10~(-11)m~2/s之间变化。对于切片厚度为2 mm和4 mm的山楂切片,活化能Ea分别为20.43、26.25 k J/mol。  相似文献   

13.
《食品与发酵工业》2017,(1):130-134
为了研究枸杞在不同热风干燥温度下的干燥特性,改善其干制品质,以宁夏枸杞为原料,对其进行不同温度的热风干燥处理,分析它的干燥特性和品质变化,结果表明:枸杞干制过程由升速、降速和恒速3个阶段组成,以降速阶段为主要过程;枸杞热风干燥水分有效扩散系数在0.76×10~(-10)m~2/s和1.98×10~(-10)m~2/s之间,且温度越高系数越大,枸杞干燥活化能为61.36 k J/mol;通过试验得出风速为0.2 m/s、湿度为30%、物料厚度1层(8 mm)恒定不变,温度为55℃热风干燥时制得的枸杞品质最好;此外,由枸杞的感官品质分析结果得出:色泽、口感和质地对枸杞的品质有重要的影响。  相似文献   

14.
研究了腌制鲅鱼在不同热风干燥温度(40℃~60℃)下的干燥动力学以及品质变化。实验结果表明,不同热风温度条件下,鲅鱼干燥均只经历了降速干燥阶段,水分扩散对鲅鱼的干燥速率起到了主导作用,且温度越高,干燥速率越快;在实验温度范围内,鲅鱼干燥的水分有效扩散系数在(1.7162×10~(-10)~3.9276×10~(-10))m~2/s之间,且有效扩散系数随着温度的升高而增大,扩散活化能Ea为37.0446 kJ/mol;通过对比分析6种经验模型的拟合情况,确定Page模型最适合用来描述鲅鱼热风干燥的过程(决定系数R~2均大于0.999,标准偏差s均小于0.3%);通过对鲅鱼品质的测定,发现干燥温度对鲅鱼的硬度、弹性、内聚性、咀嚼性、回复性、挥发性盐基氮(TVB-N)、色泽等7个指标均具有显著影响(p0.05)。  相似文献   

15.
苹果片红外热风联合干燥特性研究   总被引:2,自引:0,他引:2  
以苹果为原料,研究不同红外辐射距离和热风温度下苹果片的干燥特性,并对苹果脆片的干燥时间、色泽、硬度、脆度和复水性进行分析。结果表明,在苹果片红外-热风联合干燥过程中,热风温度对干燥时间和脆片品质影响显著;干燥过程为降速干燥,水分有效扩散系数范围在2.92×10~(-8)~8.85×10~(-8)m~2/s内,且随热风温度升高而增大;苹果片干燥活化能为75.67 k J/mol。苹果片在红外辐射距离50 mm,辐射功率1500 W,热风温度80℃,风速0.8 m/s的条件下,干燥时间仅162 min,并具有良好的色泽(L*值75.01,a*值8.92、b*值32.97)和质构(硬度1063.66 g,脆度0.531 s)。先红外后热风的联合干燥方式能有效抑制酶活和提高干燥速率,以及改善产品品质。  相似文献   

16.
以山药为原料,研究其红外干燥特性及数学模型。通过实验收集了不同切片厚度和干燥温度下,山药片水分比(MR)随干燥时间(t)的变化数据,得到了山药片的干燥曲线,并计算了干燥过程中的有效水分扩散系数(Deff)和干燥活化能(Ea)。实验结果表明,干燥温度(T)和切片厚度(L)对山药红外干燥特性有较大影响,温度越高,切片厚度越薄,山药的干燥速率(DR)越快,干燥时间越短。同时,通过拟合计算发现,在14种干燥模型中Modified Henderson and Pabis的预测值与实测值比较吻合,能够更好地反映干燥过程。在实验温度范围内,Deff在(2.1670×10~(-10)~46.369×10~(-10))m~2/s之间,随着干燥温度和切片厚度的增加而增加。山药片的Ea计算结果是30.2697 k J/mol,表明利用红外干燥技术从山药中除去1 kg水需要消耗大约1681.65k J的能量。  相似文献   

17.
南美白对虾过热蒸汽干燥特性及干燥数学模型   总被引:1,自引:0,他引:1  
为研究南美白对虾过热蒸汽干燥特性,对南美白对虾在过热蒸汽温度130~160℃下进行干燥实验。对实验所得数据与6种常用干燥模型进行非线性回归拟合分析,确定最佳干燥模型,并对模型进行验证。进一步计算不同温度下的水分有效扩散系数,根据Arrhenius经验公式建立有效扩散系数与温度的关系。结果表明:白对虾的过热蒸汽干燥是一个降速干燥过程,干燥温度对干燥过程影响显著,提高干燥温度可加快干燥速率。比较模型评价指标发现,干燥实验数据最符合Logarithmic模型。该模型预测值与实测值拟合良好,可以较为准确地模拟干燥过程中白对虾的失水率变化规律。随着过热蒸汽干燥温度的升高,有效扩散系数从3.186 08×10~(-9) m2/s增大到7.289 72×10~(-9) m~2/s,并符合Arrhenius方程,活化能为39.631 kJ/mol。此外,过热蒸汽干燥温度越低,南美白对虾的色泽度越好,温度过高会影响干制品色泽。综合考虑干燥速率和干制品品质,过热蒸汽干燥温度不宜超过150℃。  相似文献   

18.
将气体射流冲击干燥技术应用于线辣椒的干燥,研究了未处理的线辣椒和经过划口并用过热蒸气烫漂处理的线辣椒在不同干燥温度(60、65、70、75、80℃)和风速(3、6、9、12m/s)下的干燥曲线、水分有效扩散系数以及干燥活化能。通过费克第二定律求出了线辣椒的水分有效扩散系数在1.07~3.29×10-10m2/s(未处理)和2.77~6.13×10-10m2/s(处理过的)的范围内随着干燥温度和风速的升高而升高,通过阿伦尼乌斯公式计算出了线辣椒的干燥活化能Ea为54.08kJ/mol(未处理)和38.98kJ/mol(处理过的)。  相似文献   

19.
陈皮是传统的药食两用资源,为探寻陈皮的新型干燥方式,本文研究了中短波红外不同干燥温度(60,70,80,90℃)和功率(625,1 350,2 025 W)条件下柑橘皮的干燥特性和品质。结果表明:干燥温度对柑橘皮干燥特性的影响比功率大。柑橘皮中短波红外干燥为降速干燥,最佳拟合模型为Page模型。在不同干燥温度和功率条件下水分有效扩散系数Deff分别在6.5496×10~(-10)~1.3827×10~(-9)m~2/s和8.7328×10~(-10)~9.4605×10~(-10) m~2/s范围,并随着干燥温度和功率的升高而增大;运用多元线性回归分析法能够阐述干燥温度及功率与水分有效扩散系数的作用关系。根据阿伦尼乌斯公式得到柑橘皮中短波红外干燥的活化能为23.5622 k J/mol。在干燥温度70℃,功率1 350 W条件下,柑橘皮理化品质最优。柑橘皮总酚含量随干燥温度和红外功率的升高而升高;总黄酮含量随功率的升高而升高,随干燥温度的升高呈先升高后降低的趋势。本文为柑橘皮的中短波红外干燥工艺参数的优化提供参考,为陈皮的新型制备技术提供理论依据。  相似文献   

20.
以香蕉为原料,研究香蕉片热风干燥在高压电场条件下的干燥特性,探讨不同温度和厚度对香蕉片干燥速率和含水率的影响,并与热风干燥条件下进行对比。通过对试验数据进行拟合,建立香蕉片高压电场-热风干燥数学模型,同时计算有效水分扩散系数和活化能。结果表明:温度越高、厚度越薄,香蕉片越快到达干燥终点;与热风干燥相比,在高压电场干燥条件下制成的香蕉片品质更好,并能加快干燥速率、缩短干燥时间。经拟合回归,Page模型能更好地表征香蕉片高压电场-热风干燥过程中水分比的变化(R~2为0.9986),其预测值与试验值拟合度最好。香蕉片高压电场-热风干燥有效水分扩散系数在2.55769×10~(—10)~1.79459×10~(—9) m~2/s,随温度和厚度的增加而增大;3 mm和5 mm香蕉片的活化能分别为18.236 kJ/mol和22.722 kJ/mol,随着厚度的增加而增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号