首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As of 2003, 15 hydrogen refuelling stations (HRSs) have been deployed in the Netherlands. To become established, the HRS has to go through a permitting procedure. An important document of the permitting dossier is the quantitative risk assessment (QRA) as it assesses the risks of the HRS associated to people and buildings in the vicinity of the HRS. In the Netherlands, a generic prescribed approach exists on how to perform a QRA, however specific guidelines for HRSs do not exist. An intercomparison among the QRAs of permitted HRSs has revealed significant inconsistencies on various aspects of the QRA: namely the inclusion of HRS sub-systems and components, the HRS sub-system and component considerations as predefined components, the application of failure scenarios, the determination of failure frequencies, the application of input parameters, the consideration of preventive and mitigation measures as well as information provided regarding the HRS surroundings and the societal risk. It is therefore recommended to develop specific QRA guidelines for HRSs.  相似文献   

2.
Although hydrogen refueling stations (HRSs) are becoming widespread across Japan and are essential for the operation of fuel cell vehicles, they present potential hazards. A large number of accidents such as explosions or fires have been reported, rendering it necessary to conduct a number of qualitative and quantitative risk assessments for HRSs. Current safety codes and technical standards related to Japanese HRSs have been established based on the results of a qualitative risk assessment and quantitative effectiveness validation of safety measures over ten years ago. In the last decade, there has been much development in the technologies of the components or facilities used in domestic HRSs and much operational experience as well as knowledge to use hydrogen in HRSs safely have been gained through years of commercial operation. The purpose of the present study is to conduct a quantitative risk assessment (QRA) of the latest HRS model representing Japanese HRSs with the most current information and to identify the most significant scenarios that pose the greatest risks to the physical surroundings in the HRS model. The results of the QRA show that the risk contours of 10?3 and 10?4 per year were confined within the HRS boundaries, whereas the risk contours of 10?5 and 10?6 per year are still present outside the HRS. Comparing the breakdown of the individual risks (IRs) at the risk ranking points, we conclude that the risk of jet fire demonstrates the highest contribution to the risks at all of the risk ranking points and outside the station. To reduce these risks and confine the risk contour of 10?6 per year within the HRS boundaries, it is necessary to consider risk mitigation measures for jet fires.  相似文献   

3.
Hydrogen refueling stations (HRSs) are an inevitable infrastructure for the utility of fuel cell vehicles; however, they can raise public safety concerns. The aim of this study is to establish a framework for public acceptance of HRSs in Japan upon the provision of risk and/or safety measure information on HRSs. We executed an in-person interview survey asking the respondents about their acceptance of HRSs and then constructed a structural equation model on HRS acceptance with four endogenous factors. The common factors to determine acceptability were “Dread” and “Independent”. “Balance” was added to the factors for the risk-informed group. If risk information was provided, people tended to judge based on their inherent sense of “Balance”; however, if it was not provided, their judgment was based on their intuitive “Dread” of HRSs or hydrogen. This study reveals risk perception characteristics and attempts to promote improved risk communication prior to HRS installation.  相似文献   

4.
Several countries are incentivizing the use of hydrogen (H2) fuel cell vehicles, thereby increasing the number of H2 refueling stations (HRSs), particularly in urban areas with high population density and heavy traffic. Therefore, it is necessary to assess the risks of gaseous H2 refueling stations (GHRSs) and liquefied H2 refueling stations (LHRSs). This study aimed to perform a quantitative risk assessment (QRA) of GHRSs and LHRSs. A comparative study is performed to enhance the decision-making of engineers in setting safety goals and defining design options. A systematic QRA approach is proposed to estimate the likelihood and consequences of hazardous events occurring at HRSs. Consequence analysis results indicate that catastrophic ruptures of tube trailer and liquid hydrogen storage tanks are the worst accidents, as they cause fires and explosions. An assessment of individual and societal risks indicates that LHRSs present a lower hazard risk than GHRSs. However, both station types require additional safety barrier devices for risk reduction, such as detachable couplings, hydrogen detection sensors, and automatic and manual emergency shutdown systems, which are required for risk acceptance.  相似文献   

5.
Hydrogen refueling stations (HRSs) are inevitable infrastructure for the utility of fuel cell vehicles, but they can raise people's safety concerns. We analyzed whether information on the risk/safety measures changed people's acceptance of HRSs. Respondents were provided those information and asked to rate their acceptance of an HRS placement either beside their home or at the gas station closest to their home. The respondents' perception of the risk of HRSs and their attitudes on environmental issues are analyzed by factor analyses. The results show that provision of the quantitative risk information and risk acceptance criteria increased the acceptability of HRS in proximity to the homes of respondents (P < 0.1) but decreased the acceptability of HRS at the nearest gas station. Factor analyses suggest that risk information on HRS alleviates the respondents' feelings of dread or uncertainty, leading to better acceptance. Our study should promote improved risk communication prior to HRS installation.  相似文献   

6.
Quantitative Risk Assessment (QRA) supports the development of risk-informed safety codes and standards which are employed to enable the safe deployment of hydrogen technologies essential to decarbonize the transportation sector. System reliability data is a necessary input for rigorous QRA. The lack of reliability data for bulk liquid hydrogen (LH2) storage systems located on site at fueling stations limits the use of QRAs. In turn, this hinders the ability to develop the necessary safety codes and standards that enable worldwide deployment of these stations. Through a QRA-based analysis of a LH2 storage system, this work focuses on identifying relevant scenario and probability data currently available and ascertaining future data collection requirements regarding risks specific to liquid hydrogen releases. The work developed consists of the analysis of a general bulk LH2 storage system design located at a hydrogen fueling station. Failure Mode and Effect Analysis (FMEA) and traditional QRA modeling tools such as Event Sequence Diagrams (ESD) and Fault Tree Analysis (FTA) are employed to identify, rank, and model risk scenarios related to the release of LH2. Based on this analysis, scenario and reliability data needs to add LH2-related components to QRA are identified with the purpose of improving the future safety and risk assessment of these systems.  相似文献   

7.
Since 2003, the National Fuel Cell Research Center at the University of California, Irvine (UCI) has operated the first U.S. publicly accessible hydrogen refueling station (HRS). During this period, the UCI HRS supported all manufacturers in the early, pre-commercialization years of the fuel cell electric vehicle (FCEV). This paper describes and analyzes the performance of the UCI HRS during the first five years of FCEV commercialization, over which time the station has dispensed the most hydrogen daily in the California network. The station performance is compared to aggregate data published by NREL for all U.S. HRSs. Using the Hydrogen Delivery Scenario Analysis Model, typical daily refueling profiles are analyzed to determine the effect on HRS design. The results show different daily refueling profiles could substantially affect HRS design and ultimately the cost of hydrogen. While technical issues have been reduced, the compressor, dispenser, and fueling rate are areas for improvement.  相似文献   

8.
Lack of hydrogen refueling stations (HRSs) has hindered the diffusion of hydrogen fuel cell vehicles (HFCVs) in the Chinese transport market. By combining the agent-based model (ABM) and the experience weighted attraction (EWA) learning algorithm, this paper explores the impact of government subsidy strategy for HRSs on the market diffusion of HFCVs. The actions of the parties (government, HRS planning department and consumers) and their interactions are taken into account. The new model suggests dynamic subsidy mode based on EWA algorithm yields better results than static subsidy mode: HFCV purchases, HRS construction effort, total number of HRSs and expected HRS planning department profits all outperform static data by around 27%. In addition, choosing an appropriate initial subsidy strategy can increase the sales of HFCVs by nearly 40%. Early investment from government to establish initial HRSs can also increase market diffusion efficiency by more than 76.7%.  相似文献   

9.
A quantitative risk assessment of human life during the operation of a hydrogen refueling station (HRS) is conducted. We calculate the risks for three accident scenarios: a hydrogen leak from the external piping surrounding a dispenser, a hydrogen leak from an accumulator connection piping and a hydrogen leak from a compressor/connection piping in the HRS. We first calculate the probability of accident by multiplying the estimated leak frequency with the incident occurrence probability considering the ignition probability and failure probability of the safety barrier systems obtained through event tree analysis for each scenario. We next simulate the blast and flame effects of the ignition of concentration fields formed by hydrogen leakage. We then use existing probit functions to estimate the consequences of eardrum rupture, fatalities due to displacement by the blast wave, fatalities due to head injuries, first-degree burns, second-degree burns, and fatal burn injuries by accident scenario, leak size, and incident event, and we estimate the risk distribution in 1-m cells. We finally assess the risk reduction effects of barrier placement and the distance to the dispenser and quantify the risk level that HRSs can achieve under existing law. Quantitative risk assessment reveals that the risk for a leak near the dispenser is less than 10−6 per year outside a distance of 6 m to the dispenser. The risk for a leak near the accumulators and compressors exceeds 10−4 per year within a distance of 10 m from the ignition point. A separation of 6 m to the dispenser and a barrier height of 3 m keep the fatal risk from burns to the workers, consumers and residents and passersby below the acceptable level of risk. Our results therefore show that current laws sufficiently mitigate the risks posed by HRSs and open up the possibility for a regulatory review.  相似文献   

10.
Given the large investments required to establish hydrogen refuelling stations (HRSs) and the difficulty in forecasting the sales of fuel cell electric vehicles, incremental HRS deployment offers an efficient method of establishing hydrogen infrastructure with a sufficient load factor and low financial risk. Considering that some HRSs are already in use, this study assumed that the optimal location of a new HRS maximises its distance from existing HRSs and minimises its distance from customer demand points. Accordingly, a multi-objective location model and efficient exact solution methods were proposed to determine the optimal location of one or two new HRSs. As a case study, the solution methods were applied to supply hydrogen to an increasing captive fleet of taxis in a large metropolis such as Paris with fixed demand points. The methods can be widely applied to effectively install one or two HRSs incrementally.  相似文献   

11.
The potential risk exposure of people for hydrogen refueling stations is often a critical factor to gain authority approval and public acceptance. Quantitative risk assessment (QRA) is often used to quantify the risk around hydrogen facilities and support the communication with authorities during the permitting process. This paper shows a case study on a gaseous hydrogen refueling station using QRA methodology. Risks to station personnel, to refueling customers and to third parties are evaluated respectively. Both individual risk measure and societal risk measure are used in risk assessment. Results show that the compressor leak is the main contributor to risks of all three parties. Elevating compressors can be considered as an effective mitigation measure to reduce occupational risks while setting enclosure around compressors cannot. Both measures are effective to reduce risks to customers. As for third parties, societal risks can be reduced to ALARP region by either elevating compressors or setting enclosure around compressors. External safety distance of compressors cannot be considerably reduced by elevation of compressors, but can significantly be reduced by setting compressor enclosure. However, safety distances of the station are not very sensitive to both mitigation measures.  相似文献   

12.
A benchmarking exercise on quantitative risk assessment (QRA) methodologies for hydrogen safety has been conducted within the project HyQRA, under the framework of the European Network of Excellence (NoE), HySafe. The aim of the exercise was twofold: (i) to identify the differences and similarities in approaches in a QRA and their results for a hydrogen installation and (ii) to identify knowledge gaps in the various steps and parameters underlying the risk quantification of hydrogen safety.First, a reference case was defined for the benchmark: a virtual hydrogen refuelling station (HRS) in virtual surroundings comprising housing, school, shops and other vulnerable objects. For the study, a two phase approach was followed.In phase 1, all nine partners were requested to conduct a QRA according to their usual approach and experience. Basically, participants were free to define representative release cases, to apply models and frequency assessments according their own methodology, and to present risk according to their usual format. To enable inter-comparison, a required set of results data was prescribed, like distances to specific thermal radiation levels from fires and distances to specific overpressure levels. Moreover, complete documentation of assumptions, base data and references was to be reported.It was not surprising that a wide range of results was obtained, both in the applied approaches as well as in the quantitative outcomes and conclusions. This made it difficult to identify exactly which assumptions and parameters were responsible for the differences in results.These results provided the basis for a more guided QRA, the second phase. This phase 2 was defined in which the QRA was determined by a more limited number of release cases (scenarios). The partners in the project agreed to assess specific scenarios in order to identify the differences in consequence assessment approaches. The results of this phase provide a better understanding of the influence of modelling assumptions and limitations on the eventual conclusions with regard to risk to on-site people and to the off-site public.  相似文献   

13.
The rollout of hydrogen fuel cell electric vehicles (FCEVs) requires the initial deployment of an adequate network of hydrogen refueling stations (HRSs). Such deployment has proven to be challenging because of the high initial capital investment, the risk associated with such an investment, and the underutilization of HRSs in early FCEV markets. Because the compression system at an HRS represents about half of the station's initial capital cost, novel concepts that would reduce the cost of compression are needed. Argonne National Laboratory with support from the U.S. Department of Energy's (DOE) Fuel Cell Technologies Office (FCTO) has evaluated the potential for delivering hydrogen in high-pressure tube-trailers as a way of reducing HRS compression and capital costs. This paper describes a consolidation strategy for a high-pressure (250-bar) tube-trailer capable of reducing the compression cost at an HRS by about 60% and the station's initial capital investment by about 40%. The consolidation of tube-trailers at pressures higher than 250 bar (e.g., 500 bar) can offer even greater HRS cost-reduction benefits. For a typical hourly fueling-demand profile and for a given compression capacity, consolidating hydrogen within the pressure vessels of a tube-trailer can triple the station's capacity for fueling FCEVs. The high-pressure tube-trailer consolidation concept could play a major role in enabling the early, widespread deployment of HRSs because it lowers the required HRS capital investment and distributes the investment risk among the market segments of hydrogen production, delivery, and refueling.  相似文献   

14.
15.
The construction of hydrogenation infrastructure is important to promote the large-scale development of hydrogen energy industry. The technical performance of hydrogen refueling station (HRS) largely determines the refueling efficiency and cost of hydrogen fuel cell vehicles. This paper systematically lists the hydrogen refueling process and the key equipment applicable in the HRS. It comprehensively reviews the key equipment configuration from the hydrogen supply, compression, storage and refueling of the HRS. On the basis of the parameter selection and quantity configuration method, the process optimization technology related to the equipment utilization efficiency and construction cost was quantitatively evaluated. Besides, the existing problems and prospects are put forward, which lays the foundation for further research on the technical economy of HRSs.  相似文献   

16.
As part of the US Department of Energy Hydrogen, Fuel Cells & Infrastructure Technologies Program, Sandia National Laboratories is developing the technical basis for assessing the safety of hydrogen-based systems for use in the development/modification of relevant codes and standards. This work includes quantitative risk assessments (QRA) of hydrogen facilities. The QRAs are used to identify and quantify scenarios for the unintended release of hydrogen and thus help identify the code requirements that would reduce the risk at hydrogen facilities to acceptable levels.  相似文献   

17.
18.
This paper presents a QRA study on a gaseous hydrogen refueling station of 2010 World Expo. Risks to station personnel, to refueling customers and to third parties are evaluated respectively. Uncertainties that intervene in the risk analysis are also discussed. The results show that the leaks from compressors and dispensers are the main risk contributors to first party and second party risks of the Expo station, indicating that risk mitigation measures should in the first place be implemented on compressors and dispensers. For the sake of the safety of station personnel, customers, and people outside the Expo station, additional safety barrier systems must be implemented on compressors and dispensers to prevent continuous release of hydrogen from happening. With appropriate mitigation measures on compressors and dispensers, risks to all three parties of the Expo station can be reduced to the value lower than the risk acceptance criteria.  相似文献   

19.
Decreasing energy resources is among the future concerns of almost all sectors, including transportation. Hydrogen is one of the major alternatives. Although the promotion of hydrogen fuel cell vehicles (HFCVs) is supported by the governments and automobile companies, hydrogen refuelling stations (HRSs) should be accessible in order for HFCV to become widespread. Therefore the location and the number of HRS play an essential role for the spread of the HFCVs. In this study, we aim to find the number and the location of HRSs to be operated in Istanbul by using a multi-period p-median model. The adaptation to hydrogen technology for each district of the city is modelled using human development index, a measure for life quality which is then used to determine the HFCVs’ demand based on traffic flow data. It turns out that ignoring the transition of adopting hydrogen technology may result in a significant loss. HRSs have a cluster-like structure which is due to the demographic structure of the city. One cluster of stations serves to the underpopulated region (at the peripherals) and the other cluster is located at the densely populated districts (the middle regions of the city). It turns out that instead of spreading from the center to the city boundary, the stations appear at both clusters from early periods of the 30 years planning horizon.  相似文献   

20.
With the increasing deployment of hydrogen fuel cell forklifts, it is essential to understand the risks of incidents involving these systems. A quantitative risk assessment (QRA) study was conducted to determine the potential hydrogen release scenarios, probabilities, and consequences in fuel cell forklift operations. QRA modeling tools, such as fault tree analysis (FTA) and event sequence diagrams (ESD), were used together with hydrogen systems data. This work provides insights into the fatality risk from a hydrogen fuel cell forklift and the reliability of its design and components. The analysis shows that the expected fatal accident rate of a hydrogen forklift is considerably higher than current fatal injury rates observed by the Bureau of Labor Statistics for industrial truck operators and material handling occupations. Nevertheless, the average individual risk posed to forklift drivers was found to be likely tolerable based on current risks accepted by industrial truck operators. Jet fires are found to dominate the system's risk, however, the risk of explosions is also considerable. An importance measures analysis shows that these risks could be mitigated by improving the design and reliability of pressure relief devices, as well as other components prone to leak such as filters and check valves. We also identify sources of uncertainty and conservatisms in the QRA process that can guide future research in hydrogen systems. These results provide powerful insight into improvements in the design of fuel cell forklifts to reduce risk and enable the safe deployment of this key technology for a decarbonized future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号