首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Solid oxide fuel cells that are designed in different geometrical structures (planar, tubular, flat-tubular, etc.) are dirt-free, quiet, and efficient cells that run using different fuels including contagions fuels. In this work, the performance of a 3D model of direct ammonia feed anode supported flat-tubular solid oxide fuel cell having six fuel supply channels was developed, investigated, and elucidated numerically in comparison with hydrogen fuels at different operating conditions using COMOSOL Multiphysics. The finding of this study is revealed that the performance of the developed model that is running with direct ammonia is better than hydrogen feed one using the same geometrical dimensions and operating parameters. It is also confirmed that direct ammonia feed anode supported flat-tubular solid oxide fuel cell has outstanding performance over the corresponding anode supported tubular solid oxide fuel cell using the same active cell surface area, gas channel length, and operating conditions. Parametric sweep analyses have been also performed on selected operating parameters and the outcomes revealed that the working temperature and the amount of reactant gases have a powerful impact on cell performance. Thus, ammonia is a green auspicious, and profitable candidate to use as a carbon-neutral fuel for anode supported flat-tubular solid oxide fuel cells in the near future.  相似文献   

2.
Thin proton-conducting electrolyte with composition BaCe0.8Gd0.2O3−δ (BCGO) was prepared over substrates composed of Ce0.8Gd0.2O1.9 (CGO)-Ni by the dry-pressing method. Solid oxide fuel cells (SOFCs) were fabricated with the structure Ni-CGO/BCGO/Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCFO)-CGO. The performance of a single cell was tested at 600 and 650 °C, with ammonia directly used as fuel. The open circuit voltages (OCVs) were 1.12 and 1.1 V at 600 and 650 °C, respectively. The higher OCV may be due to both the compaction of the BCGO electrolyte (no porosity) and complete decomposition of ammonia. The maximum power density was 147 mW cm−2 at 600 °C. Comparisons of the cell with hydrogen as fuel indicate that ammonia can be treated as a substitute liquid fuel for SOFCs based on a proton-conducting solid electrolyte.  相似文献   

3.
A direct carbon fuel cell based on a conventional anode-supported tubular solid oxide fuel cell, which consisted of a NiO-YSZ anode support tube, a NiO-ScSZ anode functional layer, a ScSZ electrolyte film, and a LSM-ScSZ cathode, has been successfully achieved. It used the carbon black as fuel and oxygen as the oxidant, and a preliminary examination of the DCFC has been carried out. The cell generated an acceptable performance with the maximum power densities of 104, 75, and 47 mW cm−2 at 850, 800, and 750 °C, respectively. These results demonstrate the feasibility for carbon directly converting to electricity in tubular solid oxide fuel cells.  相似文献   

4.
An experimentally validated, two-dimensional, axisymmetric, numerical model of micro-tubular, single-chamber solid oxide fuel cell (MT-SC-SOFC) has been developed. The model incorporates methane full combustion, steam reforming, dry reforming and water-gas shift reaction followed by electrochemical oxidation of produced hydrogen within the anode. On the cathode side, parasitic combustion of methane along with the electrochemical oxygen reduction is implemented. The results show that the poor performance of single-chamber SOFC as compared to the conventional (dual-chamber) SOFC (in case of micro-tubes) is due to the mass transport limitation on the anode side. The gas velocity inside the micro-tube is far too low when compared to the gas-chamber inlet velocity. The electronic current density is also non-uniform over the cell length, mainly due to the short length of the anode current collector located at the cell outlet. Furthermore, the higher temperature near the cell edges is due to the methane combustion (very close to the cell inlet) and current collection point (at the cell outlet). Both of these locations could be sensitive to the silver current collecting wire as silver may rupture due to cell overheating.  相似文献   

5.
The main aim of this research is to investigate the performance of ammonia-powered microtubular solid oxide fuel cells in order to use ammonia as a possible candidate for eco-friendly and sustainable power generation systems. The performance of a direct ammonia-powered cell has been elucidated and validated with the experimental results of pure hydrogen gas at Ni?de Ömer Halisdemir University Prof. T. Nejat Veziro?lu Clean Energy Research Center. For both studies, the cathode electrode is supplied with atmospheric air. The performance of anode, electrolyte, and cathode-supported microtubular solid oxide fuel cells has been compared numerically. The findings confirmed that the peak possible power densities obtained numerically using direct ammonia, hydrogen and experimentally using pure hydrogen gas are is 628.92 mW/cm2, 622.29 mW/cm2, and, 589.28 mW/cm2 respectively at the same geometrical dimensions, component materials, and operating parameters. Thus, the results of this study demonstrate that simultaneous experimental and numerical studies make a great contribution to minimizing biases due to literature data during model validation. The numerical simulation also indicates that the performance of cathode supported is superior to that of anode supported cells run with hydrogen and ammonia fuel. Likewise, parametric sweep analysis asserts that the working temperature has a greater effect than operating pressure on tubular cell performance. Therefore, the results of this study advise that ammonia will become a carbon-free alternative fuel for solid oxide fuel cells in the coming years.  相似文献   

6.
A numerical model for an anode-supported intermediate-temperature direct-internal-reforming planar solid oxide fuel cell (SOFC) was developed. In this model, the volume-averaging method is applied to the flow passages in the SOFC by assuming that a porous material is inserted in the passages as a current collector. This treatment reduces the computational time and cost by avoiding a full three-dimensional simulation while maintaining the ability to solve the flow and pressure fields in the streamwise and spanwise directions. In this model, quasi-three-dimensional multicomponent gas flow fields, the temperature field, and the electric potential/current fields were simultaneously solved. The steam-reforming reaction using methane, the water-gas shift reaction, and the electrochemical reactions of hydrogen and carbon monoxide were taken into account. It was found that the endothermic steam-reforming reaction led to a reduction in the local temperature near the inlet and limited the electrochemical reaction rates therein. Computational results indicated that the local temperature and current density distributions can be controlled by tuning the pre-reforming rate. It was also found that a small amount of heat loss from the sidewall can cause significant nonuniformity in the flow and thermal fields in the spanwise direction.  相似文献   

7.
This study presents a two-dimensional mathematical model of a direct internal reforming solid oxide fuel cell (DIR-SOFC) stack which is based on the reforming reaction kinetics, electrochemical model and principles of mass and heat transfer. To stimulate the model and investigate the steady and dynamic performances of the DIR-SOFC stack, we employ a computational approach and several cases are used including standard conditions, and step changes in fuel flow rate, air flow rate and stack voltage. The temperature distribution, current density distribution, gas species molar fraction distributions and dynamic simulation for a cross-flow DIR-SOFC are presented and discussed. The results show that the dynamic responses are different at each point in the stack. The temperature gradients as well as the current density gradients are large in the stack, which should be considered when designing a stack. Further, a moderate increase in the fuel flow rate improves the performances of the stack. A decrease in the air flow rate can raise the stack temperature and increase fuel and oxygen utilizations. An increased output voltage reduces the current density and gas utilizations, resulting in a decrease in the temperature.  相似文献   

8.
A direct carbon solid oxide fuel cell is a new technology for clean and efficient utilization of carbon resources to generate electricity, with the advantages of high power generation efficiency and wide available fuel flexibility. Biomass, in virtue of large specific surface area, numerous oxygen-containing functional groups which can promote the electrooxidation of carbon, and low ash content which can increase the cell stability, reveals promising feasibility as a fuel for direct carbon fuel cells. Here we report a high-performance direct carbon fuel cell utilizing Chinese parasol leaf biochar as fuel, among which Ag–Gd0.1Ce0.9O2-δ and Al2O3 doped yttria-stabilized zirconia are employed as symmetrical electrodes and electrolyte materials, respectively. The cell with pure leaf biochar fuel gives a maximum power density of 249 mW cm?2 and an open circuit voltage (OCV) of 1.008 V at 850 °C while an improved performance of 272 mW cm?2 and OCV of 1.01 V are achieved for the cell fuelled by Fe catalyst-loaded leaf biochar. The above results demonstrate that Chinese parasol leaf biochar can be applied as a potential fuel for high performance direct carbon solid oxide fuel cells.  相似文献   

9.
Protonic Ceramic Fuel Cells (PCFCs) are promising power sources operating at an intermediate temperature. Although plenty of experimental studies focusing on novel material development are available, the design optimization of PCFC through numerical modelling is limited. In this study, a 3D PCFC model focusing on the cathode thickness and microstructure design is developed due to the high overpotential loss of the cathode. Unlike the 1D/2D models, the rib-size effects on the PCFC performance are fully considered when optimizing the cathode structure. Different from 1D/2D models suggesting thin cathode thickness, this study finds that the optimal cathode thickness is about 120–200 μm. In a thin cathode, weak O2 diffusion from the channel to the rib-covered cathode can lead to O2 depletion under the rib and very low local cell performance. By adjusting the cathode porosity from 0.3 to 0.5, nearly 9% performance improvement and 22.5% improvement in gas distribution uniformity can be achieved. When the cathode particle size changes from 0.1 μm to 0.2 μm, the O2 concentration under the rib increases nearly 50%. The optimal electronic phase volume fraction is suggested to be around 50–60% for achieving a balance between ohmic resistance and reaction sites. This model elucidates the relationship between cathode microstructure and PCFC performance comprehensively and can serve as a guiding tool for cell fabrication and future novel interconnect structure design.  相似文献   

10.
In laboratory studies of solid oxide fuel cell (SOFC), performance testing is commonly conducted upon button cells because of easy implementation and low cost. However, the comparison of SOFC performance testing results from different labs is difficult because of the different testing procedures and configurations used. In this paper, the SOFC button cell testing process is simulated. A 2‐D numerical model considering the electron/ion/gas transport and electrochemical reactions inside the porous electrodes is established, based on which the effects of different structural parameters and configurations on SOFC performance testing results are analyzed. Results show that the vertical distance (H) between the anode surface and the inlet of the anode gas channel is the most affecting structure parameter of the testing device, which can lead to up to 18% performance deviation and thus needs to be carefully controlled in SOFC button cell testing process. In addition, the current collection method and the configuration of gas tubes should be guaranteed to be the same for a reasonable and accurate comparison between different testing results. This work would be helpful for the standardization of SOFC button cell testing.  相似文献   

11.
Most of the gas species in the air entering the fuel cell through the cathode electrode is nitrogen. Nitrogen recognizes as the only reactant inside the fuel cell stack that remains unchanged during its internal chemical and electrochemical processes. Owing to this specific behavior of nitrogen, this study investigates the performance of two types of solid oxide fuel cells with different electrolytes (oxygen-ion conducting and proton conducting) and their electricity generation applications under the influence of changes in nitrogen ratio of the air entering the cathode electrode. Also, the role of simultaneous changes in nitrogen ratio with two main fuel cell design parameters, precisely, current density and fuel utilization factor, on the performance of the fuel cell is scrutinized. Moreover, this study compares the performance of two different electrolytes in the fuel cell structure and their application under identical conditions from thermodynamic, economic, and environmental prespectives. According to the results, with increasing input nitrogen ratio, the voltage output of each cell, energy and exergy efficiencies, electricity generation rate, and exergoeconomic factor of the applications decrease, while the unit cost of electricity and carbon dioxide emission increase. The sensitivity of the reduction in performance is higher in nitrogen ratios above 0.7.  相似文献   

12.
Anode-supported proton conducting micro tubular solid oxide fuel cells (MT-SOFCs) with the configuration of Ni–BaZr0.1Ce0.7Y0.2O3-δ (BZCY)/BZCY/BaZr0.8Y0.2O3-δ (BZY)/La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF)-BZY have been prepared by a combination of phase inversion method and suspension-coating technique. The obtained Ni-BZCY anode hollow fiber presents a special asymmetrical structure consisting of a sponge-like layer and a finger-like porous layer, which is propitious to anode electrochemical process. Bi-layer electrolytes consisting of 5 μm thick BZCY and 3 μm thick BZY are successfully fabricated by suspension-coating technique. BZY electrolytes are placed at the cathode side, in order to improve the chemical stability against CO2. The considerable electrochemical performance and good stability in the presence of CO2 indicate that the construction of BZY-BZCY bi-layer electrolytes is an effective way for the development of stable proton conducting MT-SOFCs.  相似文献   

13.
This paper describes the development and testing of a direct ammonia fuel cell utilizing a molten alkaline hydroxide electrolyte at temperatures between 200 and 450 °C. The advantages of a molten hydroxide fuel cell include the use of a highly conductive and very low-cost electrolyte, inexpensive base metal electrocatalysts, a wide operating temperature range, fuel flexibility, and fast electrode kinetics. The direct use of ammonia in such a fuel cell, even at temperatures as low as 200 °C, is made possible due to the very chemically aggressive nature of the melt. A test cell was constructed using a KOH–NaOH eutectic mixture and produced approximately 40 mW cm−2 of power at 450 °C while operating on a stream of pure ammonia fed to the anode and compressed ambient air fed to the cathode.  相似文献   

14.
Nowadays, carbon-rich fuels are the principal energy supply utilized for powering human society, and it will be continued for the next few decades. Connecting with this, modern energy technologies are very essential to convert the available limited carbon-rich fuels and other green alternative energies into useful energy efficiently with an insignificant environmental impression. Amongst all kinds of power generation systems, SOFCs running with high temperatures are emerging as a frontrunner in chemical to electrical transformation efficiency, allows the engagement of all-embracing fuel varieties with negligible environmental impact. This study investigates the effect of ammonia usage in tubular SOFC performance. Firstly, the use of ammonia and hydrogen in the electrolyte-supported SOFC (ES-SOFC) has investigated. Then, the effect of using ammonia in anode-supported SOFC (AS-SOFC), ES-SOFC and cathode-supported SOFC (CS–SOFC) on performance has been examined by using COMSOL software. As a result of the study performed, it is found that the ammonia can be used in tubular SOFC's as a carbon-free fuel and CS-SOFC shows better performance compared with ES-SOFC and AS-SOFC. Besides, the findings of this study indicate that the use of ammonia as a fuel for SOFCs is comparable to the use of hydrogen.  相似文献   

15.
A cathode-supported tubular solid oxide fuel cell (CTSOFC) with the length of 6.0 cm and outside diameter of 1.0 cm has been successfully fabricated via dip-coating and co-sintering techniques. A crack-free electrolyte film with a thickness of ∼14 μm was obtained by co-firing of cathode/cathode active layer/electrolyte/anode at 1250 °C. The relative low densifying temperature for electrolyte was attributed to the large shrinkage of the green tubular which assisted the densification of electrolyte. The assembled cell was electrochemically characterized with humidified H2 as fuel and O2 as oxidant. The open circuit voltages (OCV) were 1.1, 1.08 and 1.06 V at 750, 800 and 850 °C, respectively, with the maximum power densities of 157, 272 and 358 mW cm−2 at corresponding temperatures.  相似文献   

16.
Direct carbon solid oxide fuel cells (DC-SOFCs) with the novel perovskite La0.3Sr0.7Fe0.7Ti0.3O3–δ (LSFT) electrodes are evaluated by using biochar derived from some one-time toothpicks made of wood as fuel in different discharging modes. The constant current (CC) mode and constant resistance (CR) mode are compared with same fuel cell configuration and fuel loading. The results show that the fuel discharged in CR mode possesses larger fuel utilization (39.7%) than that in CC mode (34.5%). The biochar fuels obtained from the wood pyrolysis in Ar atmosphere for 1 h at 400 °C, 500 °C, 600 °C and 700 °C present the efficiencies of fuel utilization are 26.3%, 34.1%, 38.6% and 39.6%, respectively. A special discharging mode is employed in this paper for DC-SOFC to test cell performance and improve fuel utilization simultaneously as well.  相似文献   

17.
18.
This paper focuses on multi-objective optimisation (MOO) to optimise the planar solid oxide fuel cell (SOFC) stacks performance using a genetic algorithm. MOO problem does not have a single solution, but a complete Pareto curve, which involves the optional representation of possible compromise solutions. Here, two pairs of different objectives are considered as distinguished strategies. Optimisation of the first strategy predicts a maximum power output of 108.33 kW at a breakeven per-unit energy cost of 0.51 $/kWh and minimum breakeven per-unit energy cost of 0.30 $/kWh at a power of 42.18 kW. In the second strategy, maximum efficiency of 63.93%at a breakeven per-unit energy cost of 0.42 $/kWh is predicted, while minimum breakeven per-unit energy cost of 0.25 $/kWh at efficiency of 48.3% is obtained. The present study creates the basis for selecting optimal operating conditions of SOFC under the face of multiple conflicting objectives.  相似文献   

19.
Solid oxide fuel cell (SOFC) is a potential technology for utilizing biomass to generate electricity with high conversion efficiency and low pollution. Investigations on biomass integrated gasification SOFC system show that gasifier is one of the high cost factors which impede the practical application of such systems. Direct carbon solid oxide fuel cell (DC-SOFC) may provide a cost effective option for electricity generation from biomass because it can operate directly using biochar as the fuel so that the gasification process can be avoided. In this paper, the feasibility of using corn cob char as the fuel of a DC-SOFC to generate electricity is investigated. Electrolyte-supported SOFCs, with yttrium stabilized zirconia (YSZ) as the electrolyte, cermet of silver and gadolinium-doped ceria (GDC) as the anode and the cathode, are prepared and tested with fixed bed corn cob char as fuel and static ambient air as oxidant. The maximum power output of a DC-SOFC operated on pure corn cob char is 204 mW cm−2 at 800 °C and it achieves 270 mW cm−2 when Fe of 5% mass fraction, as a catalyst of the Boudouard reaction, is loaded on the corn cob char. The discharging time of the cell with 0.5 g corn cob char operated at a constant current of 0.1 A lasts 17 h, representing a fuel conversion of 38%. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and Raman spectroscopy have been applied to characterize the char-based fuels.  相似文献   

20.
Direct internal reforming of methanol is applied as fuel for a Ni-YSZ anode-supported solid oxide fuel cell with a flat tube based on double-sided cathodes. It achieves a power density (PD) of 0.25 W/cm2 at 0.8 V, reaching about 90% of that is fueled by H2. And the cell has been operated for more than 120 h by the direct internal reforming of methanol. The durability and apparent advantage for using humidified methanol may lead to widespread applications by direct internal reforming method for this new designed SOFC in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号