首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present work, the effect of transition metals (Ni, Fe, Co) doping on 2-dimensional (2D) molybdenum disulfide (MoS2) nanosheets for electrocatalytic hydrogen evolution reaction (HER) was explored. A simple and cost-effective hydrothermal method was adopted to synthesis transition metals doped MoS2 nanosheets. The morphological and spectroscopic studies evidence the formation of high-quality MoS2 nanosheets with the randomly doped metal ions. Notably, the Ni–MoS2 displayed superior HER performance with an overpotential of ?0.302 V vs. reversible hydrogen electrode (RHE) (to attain the current density of 10 mA cm?2) as compared to the other transition metals doped MoS2 (Co–MoS2, Fe–MoS2). From the Nyquist plot, superior charge transport from the electrocatalyst to the electrolyte in Ni–MoS2 was realized and confirmed that Ni doping provides the necessary catalytic active sites for rapid hydrogen production. The stable performance was confirmed with the cyclic test and chronoamperometry measurement and envisaged that hydrothermally synthesized Ni–MoS2 is a highly desirable cost-effective approach for electrocatalytic hydrogen generation.  相似文献   

2.
Electrochemical water-splitting is widely regarded as one of the essential strategies to produce hydrogen energy, while Metal-organic frameworks (MOFs) materials are used to prepare electrochemical catalysts because of its controllable morphology and low cost. Herein, a series of trimetallic porous Pt-inlaid Ni–Fe nanocubes (NCs) are developed with bifunctions of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In the process of prepare the electrochemical catalysts, Pt nanoparticles are uniformly embedded in the Fe–Ni PBA cube structure, and ascorbic acid is employed as a reducing agent to reduce Pt2+ to Pt nanoparticles. In this work, the cubic structure of Fe–Ni PBA is maintained and the noble metal Pt nanoparticles are embedded. Remarkably, the formation of PBA cubes, Pt inlay and reduction are completed in one step, and Pt nanoparticles are embedded by a simple method for the first time. By employing acid etching method, a porous structure is formed on the PBA cube, which increases the exposed area of the catalyst and provides more active sites for HER and OER. Due to the porous structure, highly electrochemical active surface area and the embedded of highly dispersed Pt nanoparticles, the porous 0.6 Ni–Fe–Pt nanocubes (NCs) exhibits excellently electrocatalytic performance and durable stability to HER and OER. In this work, for HER and OER, the Tafel slopes are 81 and 65 mV dec−1, the overpotential η at the current density of 10 mA cm−2 are 463 and 333 mV, and the onset potential are 0.444 and 1.548 V, respectively. And after a 12-h i-t test and 1000 cycles of cyclic voltammetry (CV), it maintained high stability and durability. This work opens up a new preparation method for noble metal embedded MOF materials and provided a new idea for the preparation of carbon nanocomposites based on MOF.  相似文献   

3.
The synthesis of high performance and economical electrocatalysts in the process of overall water splitting is very important for the production of hydrogen energy and has become one of the most important challenges. Here, various Ni, Ni–Fe, Ni–Mn nanosheets and Ni–Fe–Mn ternary nanosheets were created using cost-effective, versatile and binder-free electrochemical deposition methods, and the electrocatalytic activity of various electrodes for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) were investigated in an alkaline environment. Due to the high electrochemical active surface area due to the fabrication of nanosheets, the synergistic effect between different elements on the electronic structure, the high wettability due to the formation of nanosheets and the quick detachment of formed gasses from the electrode, the Ni–Fe–Mn nanosheets electrode showed excellent electrocatalytic activity. In order to deliver the 10 mA cm−2 current density in HER and OER processes, this electrode required values of 64 mV and 230 mV overpotential, respectively. Also, the stability test showed that after 10 h of electrolysis at a current density of 100 mA cm−2, the overpotential changes was very small (less than 4%), indicating that the electrode was excellent electrostatic stability. Also, when using as a bi-functional electrode in the full water splitting system, it only needed a cell voltage of 1528 V to deliver a current of 10 mA cm−2. The results of this study indicate a new strategy for the synthesis of active and stable electrocatalysts.  相似文献   

4.
Nickel-based materials exhibit great potential in the field of hydrogen evolution reaction (HER), however, the low catalytic active site and poor corrosion resistance still limit further application. Herein, a novel 3D self-supporting electrode of graphene oxide/nickel-cobalt/carbonized wood (GO/Ni–Co/CW) based on porous carbon is developed. The self-supporting structure of the electrode effectively prevents the shedding of catalytic materials, while the exposed active sites of the Ni–Co nanosheets ensure excellent catalysis and the decoration of GO further enhances the HER performance. Evidently, GO/Ni–Co/CW requires an overpotential of 52 mV in 0.5 M H2SO4 and 70 mV in 1 M KOH to achieve a current density of 10 mA cm−2. Furthermore, the introduction of GO greatly improves the stability performance of the electrode due to its corrosion resistance, as found by the catalytic stability performance test. As a new idea, GO decorated Ni–Co nanosheets grown on wood-based porous carbon as electrodes fully combine and exploit the advantages of CW's 3D porous structure, Ni–Co nanosheets' catalytic activity, and GO's corrosion resistance, which provide an effective strategy for novel nickel-based HER electrocatalysts.  相似文献   

5.
Searching for the catalysts with excellent catalytic activity and high chemical stability is the key to achieve large-scale production of hydrogen (H2) through hydrogen evolution reaction (HER). Two-dimensional (2D) platinum and palladium dichalcogenides with extraordinary electrical properties have emerged as the potential candidate for HER catalysts. Here, chemical stability, HER electrocatalytic activity, and the origin of improved HER performance of Pt/Pd-based dichalcogenides with single-atom doping (B, C, N, P, Au, Ag, Cu, Co, Fe, Ni, Zn) and vacancies are explored by first-principles calculations. The calculated defect formation energy reveals that most defective structures are thermodynamically stable. Hydrogen evolution performance on basal plane is obviously improved by single-atoms doping and vacancies. Particularly, Zn-doped and Te vacancy PtTe2 have a ΔGH value close to zero. Moreover, defect engineering displays a different performance on HER catalytic activity in sulfur group elements, in order of S < Te < Se in Pd-based chalcogenides, and S < Se < Te in Pt-based chalcogenides. The origin of improved hydrogen evolution performance is revealed by electronic structure and charge transfer. Our findings of the highly activating defective systems provide a theoretical basis for HER applications of platinum and palladium dichalcogenides.  相似文献   

6.
Studying the hydrogen evolution reaction (HER) catalyst is important for the global energy crisis. Clusters have many special characteristics due to quantum size effect and super high specific surface area, including optical performance, catalytic performance, etc. In this work, the structures of transition metal cluster TMn (TM = Co, Ni, Cu, Pd, Pt, n = 4–10) were searched and optimized by quantum chemistry methods. To search for non-precious metal catalysts, we calculated the Gibbs free energies for HER process on different clusters. Furthermore, the electronic structures of clusters before and after the reaction with H were analyzed, including the molecular surface electron distribution, the frontier molecular orbital, and the charge transfer properties, which dominated the HER processes. The results show that the Cu clusters have excellent HER catalytic properties due to its suitable surface electron distribution and HOMO/LUMO levels, especially Cu4, Cu7 and Cu9, which even comparable to Pt catalysts. These results can help us better understand the mechanism of clusters catalyze HER process.  相似文献   

7.
A two-step thermal polarization process was developed to create N-doped bamboo-like carbon nanotubes with Co loading. Co-doped graphite carbon nitride (g-C3N4) nanosheets were prepared through the thermal polymerization of melamine. N-doped bamboo-like carbon nanotubes confirmed by Raman spectra were fabricated via further thermal polymerization at 750 °C using g-C3N4 nanosheets. Co nanoparticles were loaded during the thermal polymerization. Electrochemical tests indicate that Co-loaded samples revealed superior hydrogen evolution reaction (HER) performance. The Pt clusters were deposited on the Co-loaded nanotube. When the loading amount of Pt clusters is 0.21% wt, the HER performance of Co-loaded nanotubes was better than that of commercial Pt/C (20% wt of Pt loading) electrode. In contrast, those Ni loaded nanotubes exhibited excellent selectivity in the catalytic direction of furfural hydrogenation, in which 99.3% of furfural was converted to tetrahydrofurfuryl alcohol at 120 °C. These results inject new vitality into the research and application of ultra-thin g-C3N4 materials.  相似文献   

8.
The interactions of a hydrogen atom with clean, vacancied, and transition metal-doped (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Au, Pt) Mg(0001) surfaces are investigated using first-principles calculations. The H adsorption on Mg(0001) with TMs doped within the second layer is generally more stable than that on clean Mg but clearly weaker than that on Mg surfaces with TM in the first layer. We find, however, that all these TM atoms prefer to substitute for the Mg atoms in the second layer rather than for those in the outermost layer of the Mg surface. To enhance the catalytic effect of the TM dopants, we investigated various co-doping conditions of TMs, and we found that i) Ti is a good “assistant” that stabilizes co-doped Co, Ni, Pd, Ag, Pt, and Au within the first layers and that ii) Ni and Co are more easily incorporated into the first layer of a Mg surface when co-doped with Ti, V, and Nb. These observations may lead to a possible approach to stabilize the TM dopants within the first layer and thus promote the hydrogenation of Mg accordingly.  相似文献   

9.
The synthesis of electrocatalysts which used simultaneously as electrodes for the hydrazine oxidation reaction (HzOR), and hydrogen evolution reaction (HER) can significantly improve the efficiency of hydrogen production in the water splitting process. Here, Ni–Co–Fe–P binder-free nanosheets were fabricated using the electrochemical deposition method and used as an effective, stable, and cost-effective electrode for hydrazine-assisted electrochemical hydrogen production. Taking advantage of high surface area, being binder-free, and synergistic effect between the elements in the electrode composition, this electrode showed unique electrocatalytic activity and stability. When this electrode was used as a bifunctional electrode for HzOR-HER, a cell voltage of 94 mV was required to reach a current density of 10 mA cm?2. The results of this study indicated that the Ni–Co–Fe–P electrode is an excellent candidate for the hydrogen production industry.  相似文献   

10.
Electrocatalysis properties strongly depend on the interaction of metallic particles and this interaction enables to change the electronic structure of alloys which enhances the catalytic activity. This property is the key factor in the developing of cost-effective and efficient Hydrogen Evolution Reaction (HER) electrocatalysts for sustainable hydrogen production. In this study, novel electrocatalysts which are decorated with Pt and Ru have been developed for HER electrocatalysis. Microscopic analysis such as scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD) and atomic force microscopy (AFM) are performed to determine the morphological and compositional structures. Electrocatalysis properties are evaluated by cathodic current-potential curves, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) in 1.0 M KOH solution. Chronoamperometry (CA) and cycle tests are used for stability/durability of electrocatalysts. Results show that a small onset potential of the porous Cu/Ni/CuZn–Pt is obtained for HER. Exchange current density and polarization resistance are found to be 5.39 mA cm?2 and 2.0 Ω cm2 at overpotential of ?100 mV for porous Cu/Ni/CuZn–Pt, respectively, indicating that Cu/Ni/CuZn–Pt is higher electrocatalytic properties than the others. Moreover, very low overpotentials at 10 and 40 mA cm?2 are obtained on porous Cu/Ni/CuZn–Pt compared with porous Cu/Ni/CuZn–Ru and Cu/Ni/CuZn. Porous Cu/Ni/CuZn–Pt also displays excellent stability/durability in test solution. The remarkable electrocatalysis properties of porous Cu/Ni/CuZn–Pt can be explained due to high porous structure, leaching of Zn from the deposit, intrinsic activity of Pt as well as changing in the electronic structure. It should be considered that porous Cu/Ni/CuZn–Pt is of high corrosion resistance in test solution for 120 h, which makes it good candidate for HER.  相似文献   

11.
Rational design and construct heterointerfaces of noble-metal-free materals is of very important to prepare high-performance electrocatalysts for hydrogen evolution reactions (HER). Herein, a novel 3D core-shell NiS@CoS@CC with abundant heterointerfaces is synthesized via a three-step strategy. The three-steps involve the rectangular Co(OH)2 nanosheet arrays were grown on the CC, Ni(OH)2 nanowires further grown on the Co(OH)2 nanosheets to form a novel core-shell architecture (that is, nanosheets wrapped with nanowires), and the conversion of hydroxides to sulfides. In the 3D NiS@CoS@CC heterostructure, NiS are dispersively distributed on the surface of rectangular CoS nanosheets to form abundant heterointerface active sites, meanwhile, a large number of tiny pores are uniformly distributed over the core-shell structure due to the conversion of hydroxides to sulfides. The abundant NiS@CoS core-shell heterointerfaces can decrease the free energy of adsorption of Hads and enhance electronic conductivity through electronic coupling effects between different components, facilitate the electron transfer from the CoS nanosheets to the surrounding NiS. Furthermore, 3D porous structure can provide abundant edge sites and more electroactive surface area, and can accelerate the diffusion of gaseous products. Consequently, the as-prepared NiS@CoS@CC electrocatalyst presents remarkably enhanced performance for the HER in alkaline medium. The overpotential for HER is as low as 30 mV at a current density of 10 mA cm−2. Correspondingly, the Tafel slope of the electrode reaction is 97 mV dec−1. Particularly, the catalyst maintained a high stability (the final polarization curves suffer negligible degradation in comparison with the initial after taking 1000 continuous CV). The work provides a viable technical solution for fabricating heterostructure materials with excellent performances for future energy storage and conversion devices.  相似文献   

12.
Hydrogen is widely considered an emissions-free alternative energy carrier for sustainable energy devices, such as fuel cells and nickel-metal hydride batteries. Recently, electrochemical hydrogen evolution reaction (HER) from water splitting has been attracted as an eco-friendly process for producing hydrogen. Herein, we report a Co/P-doped carbon material (Co/P/C) derived from cobalt-aluminum layered double hydroxide nanosheets (LDHs) for HER. The Co/P/C was synthesized using triethyl phosphite as phosphate and carbon sources by a one-step chemical vapor deposition (CVD) process. The regular arrangement of Co and Al atoms in the precursor LDHs allowed Co/P species to be highly dispersed under optimized CVD conditions. The carbon nanotube formed by the CVD process improved the catalytic activity of Co/P/C. The optimized Co/P/C exhibits a low overpotential of 240 mV at ?10 mA cm?2 for HER, comparable to the commercial Pt/C catalyst. This work provides a new direction for developing transition-metal and hetero-atom co-doped carbon materials with high catalytic activity for HER.  相似文献   

13.
Hydrogen technology through water electrolyzer systems has attracted a great attention to overcome the energy crisis. So, rationally designed non-noble metal based-electrocatalysts with high activity and durability can lead to high performance water electrolyzer systems and high purity hydrogen generation. Herein, a facile two-step method: hydrothermal and electrodeposition, respectively, are developed to decorate highly porous three-dimensional binder-free structure NiFeO/NiO nanosheets array on Ni foam (NiFeO/NiO/NF) with robust adhesion as a high-performance electrode for Hydrogen Evolution Reaction (HER).The electrodeposition process applied after the initial hydrothermal process provides a stable structure and, in addition, enhances the sluggish hydrogen evolution efficiency. In alkaline media, the developed electrode needs an overpotential of 48 and 188 mV to drive current densities (j) of 10 and 100 mA cm?2, respectively. After continuous 110 h electrochemical stability test under j = 150 mA cm?2 conditions, demonstrates an excellent stability with ignorable activity decrease. Such superior HER catalytic performance can be derived from the synergistic effect between Ni and Fe atoms, also exposure to a high number of active sites on the nanosheets, and good dynamic with effective electron transport along the nanosheets. The present work provides a promising route for the design and fabrication of cost-effective and highly efficient HER electrocatalysts.  相似文献   

14.
Electrochemical CO2 reduction reaction (CO2RR) is an efficient way in the utilization of CO2. In this work, single transition-metal (TM) atom (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn) anchored on two-dimensional (2D) Ti2CN2 are designed for CO2RR using density-functional-theory (DFT) calculation. We show that Ti2CN2 serves as an excellent substrate to support single atom catalysts (SACs), compared to Ti2CO2 and Ti2CF2. We find that the Sc, Ti and V supported on Ti2CN2 show high catalytic activities to produce CO with a low overpotential of 0.37, 0.27, and 0.23 eV, respectively. Differently, the Mn and Fe on Ti2CN2 are catalytically active for the production of HCOOH with a low overpotential of 0.32 and 0.43 eV, respectively. We further show that the negatively charged TM-Ti2CN2 can capture and activate CO2 more effectively, and the catalytic activity and selectivity can be significantly tuned by injecting extra electrons.  相似文献   

15.
It is significant but challenging to develop noble-metal-free electrocatalysts exhibiting high activity and long-term stability toward hydrogen evolution reaction (HER) to satisfy the ever-increasing demand for clean and renewable energy. Herein, an environment-friendly and low-temperature electroless deposition method is developed for the synthesis of Co–Ni–P hollow nanospheres anchored on reduced graphene oxide nanosheets (Co–Ni–P/RGO). By optimizing the molar ratio of Ni/Co precursor, composition dependent electrocatalytic performances toward HER of nanostructured Co–Ni–P/RGO electrocatalyst are investigated in 1.0 M KOH solution. The results suggest that when the molar ratio of Ni/Co precursor is 3/7, as-prepared ternary Co–Ni–P/RGO electrocatalyst exhibits a remarkably enhanced HER activity in comparison to binary Ni–P/RGO and Co–P/RGO electrocatalysts, delivering a current density of 10 mA cm−2 at the overpotential of only 207 mV. The value of Tafel slope for nanostructured Co–Ni–P/RGO electrocatalyst reveals that HER process undergoes Volmer-Heyrovsky mechanism. Besides, nanostructured Co–Ni–P/RGO electrocatalyst features superior stability under alkaline condition. The results suggest that nanostructured composite of Co–Ni–P hollow nanospheres/RGO is a potential candidate for hydrogen production through water splitting.  相似文献   

16.
Noble metal Pt is the acknowledged efficient catalyst for oxygen reduction (ORR) and hydrogen evolution reaction (HER) in commercial applications. However, due to its high price and limited reserves, its large-scale application is limited. In order to overcome this defect, the loaded Pt nanoparticles (NPs) should be small and dispersed efficiently through the design of electrode materials, so as to improve the utilization efficiency of Pt. In addition, the introduction of non-noble metal active sites can reduce the consumption of Pt efficiently. In this work, hollow graphene spheres are used as the carrier and the heteroatoms (N, Fe and Co) are introduced. The results show that the introduction of Fe and Co can form very effective heteroatom active sites (carbon encapsulated Fe/Co metals and FeCo alloy, and/or metal nitrides Fe/Co-Nx-C) in the substrate material, which improve the catalytic activity of the electrode material effectively and the utilization efficiency of Pt. In addition, the generation of Fe/Co-Nx-C active sites and the loading of Pt are also closely related to the doped N atoms. The onset potential, limiting current density (JL), half-wave potential (E1/2) and Tafel slope of sample FeCo-NxHGSs/Pt (10 wt%) can exceed or comparable to those of commercial catalysts Pt/C (20 wt%) towards ORR both in acid and alkaline electrolyte. Moreover, the values of η100 and the Tafel slope for FeCo-NxHGSs/Pt towards HER can also exceed the commercial catalysts Pt/C (20 wt%) in acid and alkaline electrolytes. The purpose of reducing the usage amount of precious metals without reducing the catalytic performance is realized. The relationship between the ORR and HER performance of the resultant electrode catalyst and the doped heteroatoms, such as nitrogen (N), iron (Fe) and cobalt (Co) atoms, was studied and discussed in detail.  相似文献   

17.
18.
Structural engineering of highly efficient electrocatalysts based on 2D transition metal dichalcogenides (TMDs) for hydrogen evolution reaction (HER) is of great significance for sustainable energy conversion processes. Herein, a novel basal-plane engineering of 2D colloidal VSe2 nanosheets has been developed for highly enhanced HER performance via a synergistic combination of atmosphere plasma (AP) treatment and Co basal-plane doping. Systematic experiments and theoretical calculations show that the AP treatment not only efficiently removes the organic ligands, but also introduces defects and cracks as more active sites on the basal plane; while the Co basal-plane doping and defects further optimize Gibbs free energy of hydrogen adsorbed on the Se sites. Such AP treated 5 % Co doped VSe2 electrocatalyst exhibits onset overpotential of only 160 mV, Tafel slope of 42 mV/decade and turnover frequency (TOF) of 6.4 S−1 at 260 mV, comparable to the most active TMDs electrocatalysts. This work provides fresh insights into the utilization of “clean surface”, defects/cracks and heteroatom doping on basal plane of 2D nanosheets for catalytic application.  相似文献   

19.
Here, we report a theoretical design of transition metals (TMs) anchored two-dimensional (2D) holey graphyne (HGY) based catalyst for the hydrogen evolution reaction (HER) through state-of-art density functional theory (DFT) simulation. The studied TMs (Co, Fe, Cr) are bonded strongly on HGY surface due to charge transfer from d orbital of metal to C 2p orbital of HGY. The HGY+TMs systems are stable at room temperature as evident from ab-initio molecular dynamics (AIMD) simulation. We predicted that the Co, Fe and Cr anchored HGY are highly active for HER activity with Gibbs free energy (ΔG) value as low as −0.21, −0.14, and −0.05 eV respectively and which are close to the best-known HER catalyst (Pt metal). The enhanced HER performance is attributed to the increased conductivity as well as redistribution of electrons. As pristine HGY is experimentally synthesized, HGY+TMs (Co, Fe, Cr) systems can be as an efficient catalyst for H2 production.  相似文献   

20.
There are many tremendous challenges to enhance the hydrogen evolution reaction (HER) activity of MoS2. In this study, nanoflower-like Co–MoS2/NiCoS structure supported on reduced Graphene Oxide (rGO) was rationally developed via a simple hydrothermal route, where the synergistic regulations of both interface structural and electronic conductivity were successfully presented by using controllable interface engineering and Co metal ions doped into MoS2 nanosheets. Ascribed to the 3D flower-like nanostructure with massive active sites, the interface coupling effect between MoS2 and Ni–Co–S phase, and Co-doped MoS2 can modulate its surface electronic density. The optimal Co–MoS2/NiCoS/rGO hybrid exhibits excellent HER activity in 1.0 M KOH, with a small overpotential (η10, 84 mV) at 10 mA cm?2 and a low Tafel slope (46 mV dec?1), accompanied by good stability. This work provides an effective route to produce other electrocatalysts based on interface structure and electronic conductivity engineering for HER in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号