首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present investigation deals with the excellent catalytic effect of graphene templated Ti–Ni–Fe nanoparticles (Ti–Ni–Fe@Gr) on de/re-hydrogenation characteristics of MgH2. The catalytic effect of Ti–Ni–Fe@Gr on MgH2 has also been compared with Ti@Gr, Ni@Gr, and Fe@Gr. It has been found that Ti–Ni–Fe@Gr lowers the onset desorption temperature up to 252 °C with improved kinetics and cyclability for the hydrogen release and absorption from MgH2. The presence of a multivalence environment around Mg/MgH2 has been analyzed by XPS analysis which gives the evidence of possible electronic exchange between the catalyst and Mg/MgH2 during de-/rehydrogenation. Since Mg/MgH2 and Ti–Ni–Fe are both anchored on graphene template, agglomeration detrimental to cycling is not possible. Thus negligible degradation of 0.22 wt% has been observed even after 24 cycles of de/re-hydrogenation.  相似文献   

2.
3.
La–Fe–B hydrogen-storage alloys were prepared using a vacuum induction-quenching furnace with a rotating copper wheel. The thermodynamic and kinetic properties of the La–Fe–B hydrogen-storage alloys were investigated in this work. The P–C–I curves of the La–Fe–B alloys were measured over a H2 pressure range of 10−3 MPa to 2.0 MPa at temperatures of 313, 328, 343 and 353 K. The P–C–I curves revealed that the maximum hydrogen-storage capacity of the alloys exceeded 1.23 wt% at a pressure of approximately 1.0 MPa and temperature of 313 K. The standard enthalpy of formation ΔH and standard entropy of formation ΔS for the alloys' hydrides, obtained according to the van't Hoff equation, were consistent with their application as anode materials in alkaline media. The alloys also exhibited good absorption/desorption kinetics at room temperature.  相似文献   

4.
5.
To enhance the electrochemical property of a La0.7Mg0.3(Ni0.9Co0.1)3.5 alloy, a three-dimensional (3D) reduced graphene oxide (rGO)-supported nickel and nitrogen co-doped (Ni–N@rGO) nanocomposite is fabricated by an impregnation method and introduced into the La0.7Mg0.3(Ni0.9Co0.1)3.5 alloy. The results show that the reversible hydrogen storage property and the comprehensive electrochemical performance of the La0.7Mg0.3(Ni0.9Co0.1)3.5 alloy are enhanced effectively when it is modified by the Ni–N@rGO nanocomposite. The high-rate dischargeability values at a discharge current density of 1500 mA g−1 for the La0.7Mg0.3(Ni0.9Co0.1)3.5 alloy and Ni–N@rGO-modified samples are 0.0% and 70.5%, respectively. Additionally, the anodic peak currents for the unmodified alloy electrode is 892 mA g−1. Under the catalytic action of the Ni–N@rGO nanocomposite, the value increases to 2307 mA g−1, which is 2.59 times larger than that of unmodified samples. The results also indicate that the diffusion ability of the hydrogen atom in the alloy electrode body enhances significantly when modified by the Ni–N@rGO nanocomposite. The hydrogen diffusion coefficient for the La0.7Mg0.3(Ni0.9Co0.1)3.5 alloy electrode increases from 3.93 × 10−10 cm2 s−1 to 6.15 × 10−10 cm2 s−1 when is modified by Ni–N@rGO nanocomposite. These improvements in the comprehensive electrochemical properties are mainly attributed to the excellent electrochemical activity and conductivity of the Ni–N@rGO nanocomposite.  相似文献   

6.
Thorn-like Ni@TiC NAs and flake-like Co@TiC NAs electrodes without any conductive agent and binder are simply fabricated by the potentiostatic electrodeposition of Ni and Co catalysts on the TiC nanowire arrays (NAs). The electrocatalytic activity of H2O2 oxidation on the Ni@TiC NAs electrodes is better than that on the Co@TiC NAs electrodes. The Ni@TiC NAs electrodes demonstrate a rough surface and have many nano-needles on the rod edges, which assures the high utilized efficiency of Ni catalysts. These particular three-dimensional structures may be very suitable for H2O2 electrooxidation. The anodic current of Ni@TiC NAs anode reaches 0.32 A cm?2 at 0.3 V in 1.0 M H2O2 + 4 M KOH solution. The DPFCs employing Ni@TiC NAs anodes display the peak power density of 30.2 mW cm?2 and open circuit voltage of 0.90 V at 85.1 mA cm?2 with desirable cell stability at 10 mL min?1 flow rate and 20 °C, which is much higher than those previously reported.  相似文献   

7.
In the present study, the effect of amorphous Zr0·67Ni0.33 additive containing nano-ZrO2 on the hydrogen sorption kinetics and thermodynamics of Mg/MgH2 was investigated. The amorphous Zr0·67Ni0.33 particles prepared by mechanical alloying of stoichiometric elements were introduced into MgH2 powder through high-energy milling to produce a MgH2/Zr0·67Ni0.33 composite. Structural and morphological analyses revealed that the nanostructuring effect of the ZrO2 containing amorphous Zr0·67Ni0.33 has led to significant grain-size refinement of MgH2 to the nanometric scale. As a result, the MgH2/Zr0·67Ni0.33 composite demonstrates enhanced hydrogenation and dehydrogenation kinetics (4.0 wt%/50 s/250 °C and 5.0 wt%/4 min/325 °C, respectively). Meantime, substantially lowered enthalpies (−63.40 and 67.06 kJ/mol H2 obtained through pressure-composition-isotherm measurements) and reduced desorption temperature (~270 °C) were observed in the composite as compared to the pure MgH2, possibly due to the dissolution of Ni into MgH2 lattice during ball milling.  相似文献   

8.
Nanostructured metallic hydrides are promising anode active materials for the next generations of Li-ion batteries due to their high capacities, adapted working potential and low polarisation. In the present study, nanocomposites made of yMgH2 and (1 ? y)TiH2 with molar composition y = 0.2, 0.5 and 0.8 were prepared by mechanical milling of elemental metal powders under hydrogen pressure. Microstructural analysis by X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM) shows the co-existence of the two hydrides at the nanoscale with average crystallite sizes comprised between 4 and 11 nm. Galvanostatic and cyclic voltammetry experiments have been performed to investigate the reversibility of the conversion reaction between both hydrides and lithium. All nanocomposites can be fully lithiated for the first discharge, but the reversibility of the reaction strongly depends on the composition. No reformation of any hydride occurs for the TiH2-rich composite (y = 0.2), TiH2 is only partially reformed for the equimolar composite (y = 0.5) and both MgH2 and TiH2 hydrides are recovered at different extents for the Mg-rich one (y = 0.8). A high reversibility (almost 80%) of TiH2 is attained in the latter composite with a promising capacity retention (70% over ten cycles) by cycling within a restricted potential window.  相似文献   

9.
Three-dimensional hierarchical porous graphene with nickel nanoparticles (3DHPG-Ni) was synthesized through electrostatic assembly method with the assistance of poly (methyl methacrylate) (PMMA) template and subsequent removal of PMMA template by calcination. The morphology, microstructure and hydrogen adsorption properties of 3DHPG-Ni nanocomposites were examined in detail. The obtained 3DHPG-Ni nanocomposite exhibited hierarchical porous structure composed of macro-, meso- and micropores, high specific surface area (925 m2 g?1), large pore volume (0.58 cm3 g?1) and excellent hydrogen storage capacity. Under the pressure of 5 bar, 3DHPG-Ni nanocomposite showed a maximum hydrogen capacity of 4.22 wt% and 1.95 wt% at 77 K and 298 K, respectively, demonstrating that the as-prepared 3DHPG-Ni nanocomposite was supposed to be a promising material with outstanding properties for practical applications in the field of hydrogen storage. The three-dimensional hierarchical porous structure, evenly distributed Ni nanoparticles and hydrogen spillover effect were responsible for the enhanced hydrogen storage capacities.  相似文献   

10.
Hydrogen production from water electrolysis with catalysts is a simple, effective, and environmentally friendly way. However, the slow kinetics of the oxygen evolution reaction (OER) directly affects the catalytic efficiency of water electrolysis during hydrogen production. While the high cost of noble metal catalysts limits their engineering applications. Therefore, there is an urgent need to develop an economical and abundant catalyst with efficient OER performance to replace noble metal catalysts to reduce costs. In this work, we propose a method for the preparation of composite catalytic electrodes by magnetically induced jet electrodeposition. Ni–Co–CeO2/Ni composite electrodes with a unique micro-nano structure and a large specific surface area were rapidly obtained through magnetically induced adsorption of nano-mixed particles. It was found that the Ni–Co–CeO2/Ni composite electrode deposited by magnetically induced electrodeposition exhibited a lower overpotential of 301 mV@10 mA/cm2 when the nano-mixed particle concentration was 2 g/L, and the corresponding Tafel slope was as low as 43.72 mV/dec. The key parameters of overpotential and Tafel slope reach or even outperform the best noble metal electrode in the industry, indicating that the Ni–Co–CeO2/Ni composite electrode had excellent OER catalytic performance. The study demonstrates that magnetically induced jet electrodeposition provides a new method for the preparation of catalytic electrodes, which has important applications in the electrolysis of water for hydrogen production.  相似文献   

11.
Mixtures of XMg–Co containing different amounts of Mg (X = 2, 3 and 7) were reactive milled under hydrogen atmosphere. 2Mg–Co only formed the Mg2CoH5 complex hydride, while the mixtures 3Mg–Co and 7Mg–Co formed different contents of Mg2CoH5 and MgH2. Their structural features and hydrogen storage properties were analyzed by different techniques. In-situ synchrotron X-ray diffraction, combined with thermal analysis techniques, (differential scanning calorimetry, thermal gravimetric analysis and quadrupole mass spectrometer) was carried out to observe the behavior of the MgH2–Mg2CoH5 mixtures during the first H-desorption. It was found that the presence of the Mg2CoH5 complex hydride has a beneficial effect on the first H-desorption of the MgH2. Additionally, after first desorption, conventional hydrogenation under high pressure and high temperature of 3Mg–Co and 7Mg–Co samples led to the formation of the Mg6Co2H11 complex hydride. The presence of Mg6Co2H11 considerably impaired the desorption properties of the nanocomposites.  相似文献   

12.
Ti–Cr–Nb hydrogen storage alloys with a body centered cubic (BCC) structure have been successfully prepared by melt-spin and Mo-doping. The crystalline structure, solidification microstructural evolution, and hydrogen storage properties of the corresponding alloys were characterized in details. The results showed that the hydrogen storage capacity of Ti–Cr–Nb ingot alloys increased from 2.2 wt% up to around 3.5 wt% under the treatment of melt-spin and Mo-doping. It is ascribed that the single BCC phase of Ti–Cr–Nb alloys was stabilized after melt-spin and Mo-doping, which has a higher theoretical hydrogen storage site than the Laves phase. Furthermore, the melt-spin alloy after Mo doping can further effectively increase the de-/absorption plateau pressure. The hydrogen desorption enthalpy change ΔH of the melt-spin alloy decreased from 48.94 kJ/mol to 43.93 kJ/mol after Mo-doping. The short terms cycling test also manifests that Mo-doping was effective in improving the cycle durability of the Ti–Cr–Nb alloys. And the BCC phase of the Ti–Cr–Nb alloys could form body centered tetragonal (BCT) or face center cubic (FCC) hydride phase after hydrogen absorption and transform to the original BCC phase after desorption process. This study might provide reference for developing reversible metal hydrides with favorable cost and acceptable hydrogen storage characteristics.  相似文献   

13.
Catalysts with high nickel concentrations 75%Ni–12%Cu/Al2O3, 70%Ni–10%Cu–10%Fe/Al2O3 were prepared by mechanochemical activation and their catalytic properties were studied in methane decomposition. It was shown that modification of the 75%Ni–12%Cu/Al2O3 catalyst with iron made it possible to increase optimal operating temperatures to 700–750 °C while maintaining excellent catalyst stability. The formation of finely dispersed Ni–Cu–Fe alloy particles makes the catalysts stable and capable of operating at 700–750 °C in methane decomposition to hydrogen and carbon nanofibers. The yield of carbon nanofibers on the modified 70%Ni–10%Cu–10%Fe/Al2O3 catalyst at 700–750 °C was 150–160 g/g. The developed hydrogen production method is also efficient when natural gas is used as the feedstock. An installation with a rotating reactor was developed for production of hydrogen and carbon nanofibers from natural gas. It was shown that the 70%Ni–10%Cu–10%Fe/Al2O3 catalyst could operate in this installation for a prolonged period of time. The hydrogen concentration at the reactor outlet exceeded 70 mol%.  相似文献   

14.
The aim of the present work is to study the catalytic efficiency of amorphous Co–Ni–P–B catalyst powders in hydrogen generation by hydrolysis of alkaline sodium borohydride (NaBH4). These catalyst powders have been synthesized by chemical reduction of cobalt and nickel salt at room temperature. The Co–Ni–P–B amorphous powder showed the highest hydrogen generation rate as compared to Co–B, Co–Ni–B, and Co–P–B catalyst powders. To understand the enhanced efficiency, the role of each chemical element in Co–Ni–P–B catalyst has been investigated by varying the B/P and Co/Ni molar ratio in the analyzed powders. The highest activity of the Co–Ni–P–B powder catalyst is mostly attributed to synergic effects caused by each chemical element in the catalyst when mixed in well defined proportion (molar ratio of B/P = 2.5 and of Co/(Co + Ni) = 0.85). Heat-treatment at 573 K in Ar atmosphere causes a decrease in hydrogen generation rate that we attributed to partial Co crystallization in the Co–Ni–P–B powder. The synergic effects previously observed with Co–Ni–B and Co–P–B, now act in a combined form in Co–Ni–P–B catalyst powder to lower the activation energy (29 kJ mol−1) for hydrolysis of NaBH4.  相似文献   

15.
Bimetallic Ni–Fe/Al2O3 catalysts were prepared by the molten salt method, and the catalytic performance of the Ni–Fe/Al2O3 catalysts with the KCl–NiCl2 melt for methane decomposition was evaluated at 800 °C. The catalysts and carbon products were characterized by XRD, SEM/EDS, XRF and Raman spectroscopy techniques. The results show that molten salt-promoted Ni–Fe/Al2O3 catalysts exhibit high activity and long-term stability up to 1000 min time on stream without any deactivation. The carbon products over the molten salt-promoted Ni–Fe/Al2O3 catalysts are in the form of small granular particles instead of filamentous carbon for the catalyst without molten salt. The promotional effect of the molten salt may attribute to the higher wettability of the Fe–Ni alloy by molten salt, which can prevent the catalysts from deactivation due to carbon encapsulation.  相似文献   

16.
In this study, the high activity NiLiB catalysts were fabricated through wet chemical reduction method. Their morphological structures, crystallinity, surface area and composition were examined by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), BrunauerEmmettTeller (BET) method and energy-dispersive X-ray spectroscopy (EDS). The aluminum-water reaction tests were explored in the range of temperatures from 3575 °C. It was found that water could react with aluminum to generate hydrogen gas. The yield and hydrogen generation rate were significantly increased when all prepared catalysts were added into the reaction. The NiLiB (XLiCl = 0.1 g) catalyst exhibited the highest cumulative hydrogen volume of 201.3 ml with an average hydrogen production rate of 0.50 ml min1 at 55 °C. This phenomenon could be pointed to the emergence of the micro galvanic cell formed by the NiLiB, Li/NiLiB, Li and Al, which accelerated aluminum to rapidly react with water.  相似文献   

17.
To elucidate the influence of Al content and effect of Ni loading on the structure and catalytic activity for hydrodenitrogenation reaction of o-toluidine, a series of mesoporous Al-SBA-15 supported Ni–Re sulphided catalysts were prepared. The textural and chemical properties of support and catalyst were analysed using XRD, N2-sorption studies, DRS UV–Vis, SEM, HRTEM, NH3-TPD, TPR and XPS. These characterizations indicate that the incorporation of Al content into the SBA-15 framework leads to the formation of moderate acid sites, which shows enhanced catalytic activity. The maximum catalytic activity in 1 wt%Ni-5wt%Re/Al-SBA-15(10) catalyst is due to fine dispersion of Re and Ni over the support, strong metal–support interaction, high degree of sulphidation and more sulphur atoms on the surface.  相似文献   

18.
Abstract

Snowflake-like Fe–Ni alloy has been synthesised via a facile hydrothermal approach without any soft and hard template. The structure of the snowflake-like Fe–Ni alloy was characterised by means of scanning electron microscopy (SEM), X-ray diffraction and energy dispersive X-ray spectroscopy. The dendrite trunk lengths of the snowflake-like Fe–Ni alloy were about 2·5–7·0 μm, and those of the branch trunk ranged from 250·0 to 650·0 nm. Furthermore, it was found that the formation and morphology of Fe–Ni alloy strongly depended on the reaction time. Moreover, the magnetic and electrical properties of Fe–Ni alloy with various morphologies were compared. Moreover, the result showed that the snowflake-like Fe–Ni alloy indicated enhancement of their ferromagnetic and electrical properties, which was attributed to their anisotropic shape.  相似文献   

19.
In-situ hydrodeoxygenation of phenol with aqueous hydrogen donor over supported Ni catalyst was investigated. The supported Ni catalysts exerted very poor performance, if formic acid was used as the hydrogen donor. Catalyst modification by loading K, Na, Mg or La salt could not make the catalyst performance improved. If gaseous hydrogen was used as the hydrogen source the activity of Ni/Al2O3 was pretty high. CO2 was found poisonous to the catalysis, due to the competitive adoption of phenol with CO2. If formic acid was replaced by methanol, the catalyst performance improved remarkably, with major products of cyclohexanone and cyclohexanol. The better effect of methanol enlightened the application of the supported Ni catalyst in in-situ hydrodeoxygenation of phenol.  相似文献   

20.
No loss in tensile ductility was found for Invar 36 alloy tested in a gaseous hydrogen atmosphere (1 MPa, −50 °C). Fractography revealed no indication of hydrogen assisted damage. Deformation mechanisms of Invar 36 are published in the open literature. Comparing the tensile test results as well as the deformation mechanisms with those of other iron based stable austenitic alloys indicate that the inherent deformation mechanism of Invar 36 comprising of a high portion of dislocation cross slip is an important reason for the negligible loss in tensile ductility under the presence of hydrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号