首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
在缸内直喷火花点火发动机上开展了天然气掺混0%-18%氢气的混合燃料不同点火时刻下的试验研究。结果表明:对于给定的喷射时刻和喷射持续期,点火时刻对发动机性能、燃烧和排放有较大影响,喷射结束时刻与点火时刻的间隔对直喷天然气发动机极为重要,喷射结束时刻与点火时刻的间隔缩短时,混合气分层程度高,燃烧速率快,热效率高。最大放热率等燃烧特征参数随点火时刻的提前而增加。HC排放随点火时刻的提前而下降,CO2和NOx排放随点火时刻的提前而增加,NOx排放的增加在大点火提前角下更明显。掺氢可降低HC排放,对CO和CO2排放影响不大。掺氢量大于10%时可提高天然气发动机热效率。  相似文献   

2.
The wide range of hydrogen's flammable limits enables ultra-lean combustion. A lean burn reduces the combustion temperature, increases thermal efficiency, and reduces knock, which is a serious problem in a spark ignition (SI) engine. The anti-knock improvement from hydrogen addition makes it feasible to increase the compression ratio (CR) and further improve the thermal efficiency. Herein, the effects of the CR on performance and emission characteristics were investigated using an 11-L heavy-duty SI engine fuelled with HCNG30 (CNG 70 vol%, hydrogen 30 vol%) and CNG. These fuels were used to operate an engine with CRs of 10.5 and 11.5. The results showed that thermal efficiency improved with an increased CR, which significantly decreased CO2 emission. On the other hand, the NOx emission was largely increased. Nevertheless, for HCNG30, a CR of 11.5 improved thermal efficiency by 6.5% and decreased NOx emission by over 75%, as compared to a conventional CNG engine.  相似文献   

3.
车用发动机燃用天然气掺氢燃料的性能计算分析与研究   总被引:2,自引:1,他引:1  
为了研究天然气掺氢发动机的燃烧特性,从模拟试验的角度运用大型发动机软件建立了6缸火花点火天然气掺氢发动机的虚拟样机,并经过试验验证该模型基本准确.通过仿真计算得出,天然气发动机在掺入氢气之后,提高了燃烧速度,明显拓宽了发动机的稀燃极限.在掺入氢气30 %(体积百分比)时,发动机的综合性能指标较好;提高压缩比,指示热效率得到提高.  相似文献   

4.
Lean combustion is an effective way for improving the spark-ignited (SI) engine performance. Unfortunately, due to the narrow flammability of gasoline, the pure gasoline-fueled engines sometimes suffer partial burning or misfire at very lean conditions. Hydrogen has many excellent combustion properties that can be used to extend the gasoline engine lean burn limit and improve the gasoline engine performance at lean conditions. In this paper, a 1.6 L port fuel injection gasoline engine was modified to be a hybrid hydrogen–gasoline engine (HHGE) fueled with the hydrogen–gasoline mixture by mounting an electronically controlled hydrogen injection system on the intake manifolds while keeping the original gasoline injection system unchanged. A self-developed hybrid electronic control unit (HECU) was used to flexibly adjust injection timings and durations of gasoline and hydrogen. Engine tests were conducted at 1400 rpm and a manifolds absolute pressure (MAP) of 61.5 kPa to investigate the performance of an HHGE at lean burn limits. Three hydrogen volume fractions in the total intake gas of 1%, 3% and 4.5% were adopted. For a specified hydrogen volume fraction, the gasoline flow rate was gradually reduced until the engine reached the lean burn limit at which the coefficient of variation in indicated mean effective pressure (COVimep) was 10%. The test results showed that COVimep at the same excess air ratio was obviously reduced with the increase of hydrogen enrichment level. The excess air ratio at the lean burn limit was extended from 1.45 of the original engine to 2.55 of the 4.5% HHGE. The engine brake thermal efficiency, CO, HC and NOx emissions at lean burn limits were also improved for the HHGE.  相似文献   

5.
This paper describes an experimental activity performed on a passenger car powered by a spark ignition engine fuelled alternatively with natural gas (CNG) and hydrogen-natural gas blends, with 15% (HCNG15) and 30% (HCNG30) of hydrogen by volume. The vehicle was tested on a chassis dynamometer over different driving cycles, allowing the investigation of more realistic operating conditions than those examined on an engine test bed at steady state conditions. Fuel consumption was estimated using the carbon balance methodology, allowing the comparison of engine average efficiency over the driving cycles for the tested fuels. Furthermore, cylinder pressure was measured and, by processing the pressure signal, a combustion analysis was performed allowing to estimate the burning rate and combustion phasing. Ignition timing was the same for all the tested fuels, in order to assess their interchangeability on in-use vehicles. Results showed CO2 emission reduction between 3% and 6% for HCNG15 and between 13% and 16% for HCNG30 respect to natural gas. Fuel consumption in MJ/km did not show significant differences between CNG and HCNG15, while reductions between 3% and 7% have been observed with HCNG30. The heat release rate increased with hydrogen content in the blends, reaching values higher than those attained using CNG. The combustion duration, calculated as the angle between 10% and 90% of heat released, has been shortened, with 16% reduction for HCNG15 and 21% for HCNG30 respect to CNG at 2.5 bar imep and 2400 rpm. As a consequence, hydrogen addition resulted in a combustion phasing advance respect to CNG. Cycle-by-cycle variability decreased, particularly at low loads, due to the positive effect of hydrogen on combustion stability.  相似文献   

6.
Lean combustion has the potential to achieve higher thermal efficiency for internal combustion (IC) engines. However, natural gas engines often suffer from slow burning rate and large cyclic variations when adopting lean combustion. In this study, using a dual-fuel optical engine with a high compression ratio, the effects of direct-injected hydrogen on lean combustion characteristics of natural gas engines was investigated, emphasizing the role of hydrogen injection timing. Synchronization measurement of in-cylinder pressure and high-speed photography was performed for combustion analysis. The results show that the direct-injected hydrogen exhibits great improvement in lean combustion instability and power capability of natural gas engines. Visual images and combustion phasing analysis indicate that the underlying reasons are ascribed to the fast flame propagation with hydrogen addition. Regarding the direct injection timings, it is found that late injection of direct-injected hydrogen can achieve higher thermal efficiency, manifesting advanced combustion phasing, and increased heat release rate. Specifically, the flame propagation speed is elevated by approximately 50% at ?100 CAD than that of ?250 CAD. Further analysis indicates that the improvement of engine performance is ascribed to the increased volumetric efficiency and in-cylinder turbulence intensity, manifesting distinct flame centroid pathways at different injection timings. The current study provides insights into the combustion optimization of natural gas engines under lean burning conditions.  相似文献   

7.
利用快速压缩装置进行了天然气直喷分层燃烧可行性的研究。结果表明 :天然气分层燃烧具有短的初期火焰发展期和主燃期以及高的燃烧压力。分层燃烧可使稀燃极限延伸到很小的当量比。由于过度分层 ,CO在当量比大于 0 .8时急剧增加 ,而 NOx 的峰值也因充量分层而出现在小当量比处。燃烧效率在当量比处于0 .1~ 0 .9范围时高于 0 .92 ,在极小当量比时由于未燃混合气淬熄 ,在当量比时由于过度分层而使燃烧效率降低。根据燃烧产物计算的燃烧效率与根据放热分析获得的燃烧效率一致。因此 ,天然气直喷分层燃烧在宽广的当量比范围内可望实现高效燃烧火花助燃发动机的宽广的高效燃烧。  相似文献   

8.
The paper presents results of experimental research on a dual-fuel engine powered by diesel fuel and natural gas enriched with hydrogen. The authors attempted to replace CNG with hydrogen fuel as much as possible with a constant dose of diesel fuel of 10% of energy fraction. The tests were carried out for constant engine load of IMEP = 0.7 MPa and a rotational speed of n = 1500 rpm. The effect of hydrogen on combustion, heat release, combustion stability and exhaust emissions was analyzed. In the test engine, the limit of hydrogen energy fraction was 19%. The increase in the fraction caused an increase in the cycle-by-cycle variation and the occurrence of engine knocking. It was shown that the enrichment of CNG with hydrogen allows for the improvement in the combustion process compared to the co-combustion of diesel fuel with non-enriched CNG, where the reduction in the duration of combustion by 30% and shortening the time of achieving 50% of MFB by 50% were obtained. The evaluation of the spread of the end of combustion is also presented. For H2 energetic share over 20%, the spread of end of combustion was 48° of crank angle. Measurement of exhaust emissions during the tests revealed an increase in THC and NOx emissions.  相似文献   

9.
Hydrogen has many excellent combustion properties that can be used for improving combustion and emissions performance of gasoline-fueled spark ignition (SI) engines. In this paper, an experimental study was carried out on a four-cylinder 1.6 L engine to explore the effect of hydrogen addition on enhancing the engine lean operating performance. The engine was modified to realize hydrogen port injection by installing four hydrogen injectors in the intake manifolds. The injection timings and durations of hydrogen and gasoline were governed by a self-developed electronic control unit (DECU) according to the commands from a calibration computer. The engine was run at 1400 rpm, a manifold absolute pressure (MAP) of 61.5 kPa and various excess air ratios. Two hydrogen volume fractions in the total intake of 3% and 6% were applied to check the effect of hydrogen addition fraction on engine combustion. The test results showed that brake thermal efficiency was improved and kept roughly constant in a wide range of excess air ratio after hydrogen addition, the maximum brake thermal efficiency was increased from 26.37% of the original engine to 31.56% of the engine with a 6% hydrogen blending level. However, brake mean effective pressure (Bmep) was decreased by hydrogen addition at stoichiometric conditions, but when the engine was further leaned out Bmep increased with the increase of hydrogen addition fraction. The flame development and propagation durations, cyclic variation, HC and CO2 emissions were reduced with hydrogen addition. When excess air ratio was approaching stoichiometric conditions, CO emission tended to increase with the addition of hydrogen. However, when the engine was gradually leaned out, CO emission from the hydrogen-enriched engine was lower than the original one. NOx emissions increased with the increase of hydrogen addition due to the raised cylinder temperature.  相似文献   

10.
The idle performance of an 11-L, 6-cylinder engine equipped with a turbocharger and an intercooler was investigated for both compressed natural gas (CNG) and hydrogen-blended CNG (HCNG) fuels. HCNG, composed of 70% CNG and 30% hydrogen in volume, was used not only because it ensured a sufficient travel distance for each fueling, but also because it was the optimal blending rate to satisfy EURO-6 emission regulation according to the authors' previous studies. The engine test results demonstrate that the use of HCNG enhanced idle combustion stability and extended the lean operational limit from excess air ratio (λ) = 1.5 (CNG) to 1.6. A decrease of more than 25% in the fuel consumption rate was achieved in HCNG idle operations compared to CNG. Total hydrocarbon and carbon monoxide emissions decreased when fueled with HCNG at idle because of the low carbon content and enhanced combustion characteristics. In particular, despite hydrogen enrichment, less nitrogen oxides (NOx) were emitted with HCNG operations because the amount of fuel supplied for a stable idle was lower than with CNG operations, which eventually induced lower peak in-cylinder combustion temperature. This low HCNG fuel quantity in idle condition also induced a continuous decrease in NOx emissions with an increase in λ. The idle engine test results also indicate that cold-start performance can deteriorate owing to low exhaust gas temperature, when fueled with HCNG. Therefore, potential solutions were discussed, including combustion strategies such as retardation of spark ignition timing combined with leaner air/fuel ratios.  相似文献   

11.
The sustainable reduction of greenhouse gas emissions from road transport requires solutions to achieve net-zero carbon dioxide emissions. Therefore, in addition to vehicles with electrified powertrains, such as those implemented in battery electric of fuel cell vehicles, internal combustion engines fueled with e-fuels or biofuels are also under discussion. An e-fuel that has come into focus recently, is hydrogen due to its potential to achieve zero tank-to-wheel and well-to-wheel carbon dioxide emissions when the electrolysis is powered by electricity from renewable sources. Due to the high laminar burning velocity, hydrogen has the potential for engine operation with high cylinder charge dilution by e.g. external exhaust gas recirculation or enleanment, resulting in increased efficiency. On the other hand, the high burning velocity and high adiabatic flame temperatures pose a challenge for engine cooling due to increased heat losses compared to conventional fuels. To further evaluate the use of hydrogen for small passenger car engines, a series production 1 L 3 cylinder gasoline engine provided by Ford Werke GmbH was modified for hydrogen direct injection. The engine was equipped with a high pressure external exhaust gas recirculation system to investigate charge dilution at stoichiometric operation. Due to limitations of the turbocharging system, very lean operation, which can achieve nitrogen oxides raw emissions below 10 ppm, was limited to part load operation below BMEP = 8 bar. Thus, a reduction of the nitrogen oxides emission level at high loads compared to stoichiometric operation was not possible. At stoichiometric operation with external exhaust gas recirculation engine efficiency can be increased significantly. The comparison of stoichiometric hydrogen and gasoline operation shows a reduced indicated efficiency with hydrogen with significant faster combustion of hydrogen at comparable centers of combustion. However, higher boost pressures would allow to achieve even higher indicated efficiencies by charge dilution compared to gasoline engine operation.  相似文献   

12.
The study has focused on determining the laser plug effects on engine characteristics and the laser plug usage results have compared with spark plug usage. The laser ignition technique is a type of new ignition technique and an important solution that can make combustion systems more efficient. The testing of an engine with a laser plug is the novelty of the study and the tests were carried out with reference to equivalence ratio and plug power ranges. The behaviors of the engine at full load were examined so experimentally for both ignition techniques at hydrogen enriched CNG and iso-octane mixture usage. The tests were carried out for variations of 0.4–2.0 equivalence ratio and 20–120 W plug power. A mixture that 90% iso-octane and 10% HCNG in mass was used at two ignition modes in tests for 3300 rpm maximum engine torque speed. Also, the flame formation and propagation for both ignition techniques were detected via a high-speed camera. The tests have shown the laser ignition leads to more energy consumption in the rich mixture conditions and also, less energy is required in the lean conditions. The laser ignition discharge has extended the engine's lean combustion limits via a small energy input at the tests. The high-speed camera images have shown that the laser ignition reduces the Kernel flame formation and propagation time. The laser ignition technique was produced less NOx than the conventional spark ignition method.  相似文献   

13.
摘要甲醇裂解气(D.M)是甲醇在一定温度下发生裂解反应的产物(2H_2+CO),而发动机排气余热提供甲醇蒸发和裂解所需热量.当发动机使用汽油和富氢的甲醇裂解气时,能在较稀混合气下运行;为了获得更稀的混合气,对发动机进行了补气实验.结果表明,燃用混合燃料时热效率有较大的改善,燃烧稳定性加强.通过对示功图和放热规律的分析,明确了发动机经济性提高的原因.  相似文献   

14.
Linear hydrogen engine is a new type of energy conversion device to supports variable compression ratio operation for clean emission. However, the new hydrogen engine using conventional spark ignition shows slow combustion speed and low thermal efficiency. This study makes a preliminary assessment to discuss the application of diesel pilot-ignition technology in linear hydrogen engine aiming to accelerate combustion and improve efficiency. A new coupling model between dynamics and thermodynamics is proposed and then iteratively calculated to give insight the interrelationship of combustion and motion in a diesel pilot-ignited linear hydrogen engine, while the effect of injection position on the hydrogen engine combustion is also investigated to make clear the feasibility of combustion optimization. The results indicate that the linear hydrogen engine is speeded by properly advancing the injection to promote combustion, and it has a positive effect on in-cylinder gas temperature, pressure and pressure rise rate, unless the injection is too early which results in higher NO emissions and aggravate the working intensity of the engine. In addition, the closer the fuel injection is to the top dead center, the incomplete combustion of hydrogen and diesel in the cylinder, the decrease of engine fuel economy and the increase of soot emissions. There is an optimal thermal efficiency of 40.7% for the LHE when it operates in the 0.8 mm injection position condition.  相似文献   

15.
An experimental study on the combustion and emission characteristics of a direct-injection spark-ignited engine fueled with natural gas/hydrogen blends under various ignition timings was conducted. The results show that ignition timing has a significant influence on engine performance, combustion and emissions. The interval between the end of fuel injection and ignition timing is a very important parameter for direct-injection natural gas engines. The turbulent flow in the combustion chamber generated by the fuel jet remains high and relative strong mixture stratification is introduced when decreasing the angle interval between the end of fuel injection and ignition timing giving fast burning rates and high thermal efficiencies. The maximum cylinder gas pressure, maximum mean gas temperature, maximum rate of pressure rise and maximum heat release rate increase with the advancing of ignition timing. However, these parameters do not vary much with hydrogen addition under specific ignition timing indicating that a small hydrogen fraction addition of less than 20% in the present experiment has little influence on combustion parameters under specific ignition timing. The exhaust HC emission decreases while the exhaust CO2 concentration increases with the advancing of ignition timing. In the lean combustion condition, the exhaust CO does not vary much with ignition timing. At the same ignition timing, the exhaust HC decreases with hydrogen addition while the exhaust CO and CO2 do not vary much with hydrogen addition. The exhaust NOx increases with the advancing of ignition timing and the behavior tends to be more obvious at large ignition advance angle. The brake mean effective pressure and the effective thermal efficiency of natural gas/hydrogen mixture combustion increase compared with those of natural gas combustion when the hydrogen fraction is over 10%. __________ Translated from Transactions of CSICE, 2006, 24(5): 394–401 [译自:内燃机学报]  相似文献   

16.
In this study, a specially designed premixed combustion chamber system for ammonia-hydrogen and methane-air laminar premixed flames is introduced and the combustion limits of ammonia-hydrogen and methane-air flames are explored. The measurements obtained the blow-out limits (mixed methane: 400–700 mL/min, mixed hydrogen: 200–700 mL/min), mixing gas lean limit characteristics (mixed methane: 0–82%, mixed hydrogen: 0–37%) and lean/rich combustion characteristics (mixed methane: ? = 0.6–1.9, mixed hydrogen: ? = 0.9–3.2) of the flames. The results show that the ammonia-hydrogen-air flame has a smaller lower blow-out limit, mixing gas ratio, lean combustion limit and higher rich combustion limit, thereby proving the advantages of hydrogen as an effective additive in the combustion performance of ammonia fuel. In addition, the experiments show that increasing the initial temperature of the premixed gas can expand the lean/rich combustion limits of both the ammonia-hydrogen and ammonia-methane flames.  相似文献   

17.
The turbocharged Diesel engine is the most efficient engine now in production for transport applications with full load brake engine thermal efficiencies up to 40-45% and reduced penalties in brake engine thermal efficiencies reducing the load. The secrets of the turbocharged Diesel engine performances are the high compression ratio and the lean bulk combustion mostly diffusion controlled in addition to the better use of the exhaust energy. Despite these advantages and the further complications of hydrogen in terms of abnormal combustion phenomena and displacement effect, the most part of the dual fuel Diesel-hydrogen engines has been developed so far injecting hydrogen in the intake manifold or in the intake port, and then injecting the Diesel fuel in the cylinder to ignite there a homogeneous mixture. This paper shows how a latest production common-rail Diesel engine could be modified replacing the Diesel injector by a double injector as those proposed by Westport since more than two decades for CNG first and then for CNG and hydrogen to provide much better performances. A model is first developed and validated versus extensive high quality dynamometer data for the Diesel engine only covering with almost 200 points the load and speed range. This model replaces the multiple injection strategy with a single equivalent injection for the purposes of the brake efficiency results still providing satisfactory accuracy. The model is then used to simulate the dual fuel operation with a pilot Diesel followed by a main hydrogen injection replacing the Diesel fuel with the hydrogen fuel and using the same parameters for start and duration of the equivalent injection at same percentage load and speed. While the top load air-to-fuel ratio of the Diesel is a lean 1.55, the top air-to-fuel ratio of the hydrogen is assumed to be a stoichiometric 1. Within the validity of these assumptions it is shown that the novel engine has better than Diesel fuel conversion efficiencies and higher than Diesel power outputs. These results clearly indicate the development of the direct injection system as the key factor where to focus research and development for this kind of engines.  相似文献   

18.
In this study, the effects of hydrogen addition on the engine performance were investigated using spark ignition engine fueled gasoline with a compression ratio of 15 at an air excess ratio (λ) of 1.8 and above. At λ = 1.8, the indicated thermal efficiency at the spark timing of the knock limit reached the maximum level under the conditions in which the hydrogen fraction was set to 4% of the heating value of the total fuel. Based on a heat balance analysis, the best hydrogen fraction was found as a balance between the improvement in the burning efficiency and the increase in heat loss. The lean limit was extended when the hydrogen fraction was increased from λ = 1.80 to λ = 2.28. The hydrogen addition achieved the maximum indicated thermal efficiency at spark timing of the knock limit was obtained at λ = 2.04, where the hydrogen fraction was 10%.  相似文献   

19.
Hydrogen and iso-butanol are notable potential alternative fuels. Hydrogen addition under air dilution conditions was investigated in this study in an attempt to enhance the thermal efficiency of spark ignition (SI) engines fueled with iso-butanol-gasoline (B33) at partial load. Hydrogen appears to have positive effect on combustion progress that is prolonged during air dilution. Under lean hydrogen-enriched mixture conditions, the brake thermal efficiency was increased by about 4% and combustion instability was reduced; the lean burn limit migrated from 1.4 to 1.8 for B33 engine after hydrogen addition. Under lean burn conditions, the durations of initial flame development and rapid burning were shortened markedly by hydrogen; both were extended by air dilution. After hydrogen addition, the unburnt HC emissions of iso-butanol-gasoline decreased markedly and carbon monoxide (CO) emissions decreased slightly. NOx emissions from hydrogen-enriched iso-butanol-gasoline increased as lambda grew near to 1.0, at a significant reduction with increasing excess air rate regardless of fuel type. The combination of hydrogen addition and air dilution exhibited a positive inhibition on particle matter (PM) emissions regardless particle in nucleation or the accumulation mode, and the particle surface concentration was reduced significantly. Finally, an improved combustion progress was observed after hydrogen addition during air dilution, as well as a higher brake thermal efficiency and wider lean burn limit with acceptable combustion stability.  相似文献   

20.
The free piston engine linear generator (FPELG) is a simple engine structure with few components, making it a promising power generation system. However, because the engine works without a crankshaft, the handling of the piston motion control (PMC) is the main challenge influencing the stability and performance of FPELGs. In this article, the optimal operating parameters of FPELG for maximising engine performance and reducing exhaust gas emissions were studied. Moreover, the influence of adding hydrogen (H2) to compressed natural gas (CNG) fuel on FPELG performance was investigated. The influence of operating parameters on in-cylinder pressure was also analysed. The single-piston FPELG fuelled by CNG blended with H2 was used to run the experiments. The response surface methodology (RSM), including the central composite design (CCD), was used. Then, adequacy models were developed and verified by ANOVA. Three independent factors on seven responses were utilised for optimisation. Results showed that the optimal operating conditions of lambda, ignition velocity, and injection position were 0.96, 0.53 m/s, and ?14.9 mm, respectively. The best-predicted values were as follows: indicated mean effective pressure (IMEP) of 7.6 bar, in-cylinder pressure of 27.87 bar, combustion efficiency of 39.64%, CO of 9531.41 ppm, CO2 of 2.4%, HC of 551.75 ppm, and NOX of 113.737 ppm. Furthermore, results showed that the experimental data could be fitted well with the predicted quadratic model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号