首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As part of the Lake Michigan Mass Balance Project, total and methyl mercury were determined for lake trout (Salvelinus namaycush) and five forage fish species collected from Lake Michigan near Saugatuck, Michigan, and Port Washington, Sheboygan Reef, and Sturgeon Bay, Wisconsin, between 1994 and 1995. With a mean concentration of 179 ng/g wet wt., whole lake trout total mercury (HgT) concentrations ranged between 27.6 and 348 ng/g wet wt. For combined sites, 1–4 yrs, 5–6 yrs, 7–11 yrs, and 12–15 yrs lake trout mean HgT concentrations were 73.7, 130, 212, and 280 ng/g, respectively. Forage fish species alewife (Alosa pseudoharengus), bloater (Coregonus hoyi), slimy sculpin (Cottus cognatus), deepwater sculpin (Myoxocephalus thompsoni), and rainbow smelt (Osmerus mordax) had mean HgT concentrations of 63.8, 55.3, 36.7, 51.4, and 35.2 ng/g wet wt., respectively. With the exception of alewife, bloater, and slimy sculpin, all fish species contained approximately 100% methyl mercury (MeHg). Field bioaccumulation factors (BAF) were consistent with a Lake Michigan food chain that is more efficient at transferring MeHg to higher trophic levels than some inland lakes. This and other studies of lake trout from Lake Michigan document decreasing HgT concentrations in lake trout from 1971 to 1985 and constant or increasing concentrations between 1985 and 2000. These observations were supported by a similar trend in Lake Michigan Hg sediment fluxes. To our knowledge, this is the most intense two year study of mercury in fish for any Great Lake or other large fresh water system and is one of the most complete studies of mercury cycling in the Lake Michigan food chain.  相似文献   

2.
Most of the PCB body burden in lake trout (Salvelinus namaycush) of the Great Lakes is from their food. PCB concentrations were determined in lake trout from three different locations in Lake Michigan during 1994–1995, and lake trout diets were analyzed at all three locations. The PCB concentrations were also determined in alewife (Alosa pseudoharengus), rainbow smelt (Osmerus mordax), bloater (Coregonus hoyi), slimy sculpin (Cottus cognatus), and deepwater sculpin (Myoxocephalus thompsoni), five species of prey fish eaten by lake trout in Lake Michigan, at three nearshore sites in the lake. Despite the lack of significant differences in the PCB concentrations of alewife, rainbow smelt, bloater, slimy sculpin, and deepwater sculpin from the southeastern nearshore site near Saugatuck (Michigan) compared with the corresponding PCB concentrations from the northwestern nearshore site near Sturgeon Bay (Wisconsin), PCB concentrations in lake trout at Saugatuck were significantly higher than those at Sturgeon Bay. The difference in the lake trout PCB concentrations between Saugatuck and Sturgeon Bay could be explained by diet differences. The diet of lake trout at Saugatuck was more concentrated in PCBs than the diet of Sturgeon Bay lake trout, and therefore lake trout at Saugatuck were more contaminated in PCBs than Sturgeon Bay lake trout. These findings were useful in interpreting the long-term monitoring series for contaminants in lake trout at both Saugatuck and the Wisconsin side of the lake.  相似文献   

3.
The collapse of Diporeia spp. and invasions of dreissenid mussels (zebra, Dreissena polymorpha; quagga, D. bugensis) and round goby (Neogobius melanostomus) have been associated with declines in abundance of native benthic fishes in the Great Lakes, including historically abundant slimy sculpin (Cottus cognatus). We hypothesized that as round goby colonized deeper habitat, slimy sculpin avoided habitat competition, predation, and aggression from round goby by shifting to deeper habitat. Accordingly, we predicted increased depth overlap of slimy sculpin with both round goby and deepwater sculpin (Myoxocephalus thompsonii) that resulted in habitat squeeze by both species. We used long-term bottom trawl data from Lakes Michigan, Huron, and Ontario to evaluate shifts in slimy sculpin depth and their depth overlap with round goby and deepwater sculpin. Lake Huron most supported our hypotheses as slimy sculpin shifted to deeper habitat coincident with the round goby invasion, and depth overlap between slimy sculpin and both species recently increased. Slimy sculpin depth trends in Lakes Michigan and Ontario suggest other ecological and environmental factors better predicted sculpin depth in these lakes.  相似文献   

4.
Polybrominated diphenyl ethers (PBDEs) were analyzed in 88 forage fish samples collected from Lake Michigan in 1995 and in 2002/2003. Lipid-normalized total PBDE concentrations ranged from 149 to 1094 ng/g. Total PBDEs in alewife and deepwater sculpin did not change significantly from 1995 to 2002/2003, while the levels in bloater chub and the slimy sculpin decreased. BDE-47 was the most abundant congener in the fish. All of the forage fish were depleted in BDE-99 relative to what would be expected based on the congener composition of the commercial formulation in use. The deepwater sculpins were particularly lacking in BDE-99. Changes in the food web brought about by the dramatic decline of Diporeia abundance (due to the invasion of zebra and quagga mussels) may have affected the levels of PBDEs in some of the forage fish.  相似文献   

5.
Thiamine deficiency is an impediment to salmonine reproduction in the Great Lakes, but little is known about other measures of dietary quality, such as lipid-soluble vitamins or fatty acids in prey fish. The objective of the present research was to measure selected essential nutrients and thiaminase activity in five Lake Ontario prey fish species (alewife Alosa psuedoharengus, rainbow smelt Osmerus mordax, slimy sculpin Cottus cognatus, threespine stickleback Gasterosteus aculeatus and round goby Neogobius melanostomus). Total thiamine was greater in alewife (13.6 nmol/g) than in the other species (6.2–9.0 nmol/g). In 2006, thiaminase activity was unexpectedly high in goby (12.49 nmol/g/min), sculpin (1.99 nmol/g/min) and smelt (9.24 nmol/g/min). In 2007, thiaminase activity in goby (0.99 nmol/g/min) and smelt (4.94 nmol/g/min) was low compared to 2006, whereas sculpin thiaminase activity was greatest (6.01 nmol/g/min). The causes for this variability are unknown. Thiaminase activity was within the expected range for alewife (4.31–6.31 nmol/g/min) and stickleback (0.06 nmol/g/min). Concentrations of retinoids, carotenoids, vitamin E (tocopherol) and fatty acids also differed among prey fish species. Tocopherol concentrations in goby (12.74 ng/mg), sculpin (25.29 ng/mg), and smelt (22.81 ng/mg) were greater than in alewife (1.59 ng/mg). Goby had the lowest ∑ ω-3 to ∑ ω-6 fatty acid ratio (1.44) when compared to sculpin (2.97) and smelt (2.85). Thiaminase concentrations in alewife and smelt (and possibly goby) suggest that they have the potential to adversely affect natural reproduction in salmonines. Concentrations of carotenoids, retinoids and tocopherol in prey fish appear to be lower than salmonine dietary requirements.  相似文献   

6.
Two hypotheses have been proposed to explain the dynamics of sympatric populations of deepwater sculpin (Myoxocephalus thompsonii) and slimy sculpin (Cottus cognatus). The first hypothesis is that slimy sculpins negatively affect survival of deepwater sculpins, and therefore deepwater sculpins coexist with slimy sculpins only when a keystone predator, lake trout (Salvelinus namaycush), is abundant. According to the second hypothesis, changes in the abundances of the sculpins are driven by interactions with fishes other than sculpins. To evaluate both hypotheses, we applied regression analyses to long-term observations on abundances of both sculpin populations in Lake Michigan during 1973–2002. For slimy sculpin abundance, we considered the predation effect by lake trout and the effect of deepwater sculpins on slimy sculpins. For deepwater sculpin abundance, we considered the effect of alewife (Alosa pseudoharengus) on deepwater sculpins, the predation effect by burbot (Lota lota), and the effect of slimy sculpins on deepwater sculpins. An information criterion was used to select the best regression model explaining the temporal trends. The best model to explain trends in slimy sculpin abundance was the model that included the lake trout predation term only. The best model to explain trends in deepwater sculpin abundance was a model including the alewife and burbot predation terms. Thus, a negative effect of slimy sculpins on deepwater sculpins was not essential in capturing the sculpin community dynamics. Therefore, our results supported the second hypothesis. Further, our results supported the contention that control of the alewife population was a prerequisite for restoration of deepwater sculpin populations.  相似文献   

7.
Lake Michigan salmon and trout populations are important species for recreational fisheries and food web management, and are largely supported through stocking efforts, with varying degrees of natural recruitment. Ongoing fisheries management of these salmonine populations is dictated by relationships between predator and prey abundance as well as community structure within the lake. However, while prey fish biomass has declined, and species composition has changed in recent decades, knowledge of prey consumption by the salmonine community has lagged. Herein, we explore trophic relationships using fatty acids profiles, which offer insights into the foraging habits and energy pathways relied on over weeks to months prior to collection. Fatty acids of the prey base for salmonines in Lake Michigan indicate a gradient of foraging habits that range from pelagic (typified by alewife and rainbow smelt) versus benthic (i.e., slimy sculpin and round goby) resource use. Fatty acids implied that there was more variation in foraging habits among individual lake trout and brown trout compared to Chinook salmon, coho salmon and rainbow trout, which appeared to all rely almost exclusively on pelagic prey. Fatty acid profiles also indicated size-based shifts in foraging habits; for example, larger lake trout consuming a greater proportion of benthic prey than smaller individuals. Data herein suggest that Chinook and coho salmon, as well as rainbow trout, are more likely to experience competitive interactions during times of low pelagic prey-fish abundance in Lake Michigan, whereas brown and lake trout are able to utilize benthic resources to a greater degree.  相似文献   

8.
Feeding selectivity was compared between slimy sculpin Cottus cognatus and deepwater sculpin Myoxocephalus thompsonii collected from southeast Lake Michigan during 1999-2002 to evaluate the hypothesis that differential prey selection contributes to long-term coexistence of these species. Study results indicated that slimy and deepwater sculpin select different prey types and sizes. Selection for the shrimp-like crustacean Mysis diluviana was consistently greater for deepwater sculpin than for slimy sculpin, whereas selection for the amphipod Diporeia spp. was higher for slimy sculpin than for deepwater sculpin when Mysis was the only other available prey type. Slimy sculpin also exhibited higher selectivity for chironomids (order Diptera, family Chironomidae) compared with deepwater sculpin. Patterns in food resource partitioning were consistent between sampling periods covering different locations, seasons and depths, as well as between locations with varying levels of Diporeia availability. This consistency suggests (1) that differences in food use by the two species are associated with intrinsic differences in food preferences or feeding behaviors and (2) that Diporeia declines had not fundamentally altered the resource partitioning dynamics of the two species as of 2002. The results also indicated that slimy and deepwater sculpin can partition food resources on the basis of prey size since deepwater sculpin tended to select larger Diporeia than slimy sculpin. Differences in prey selection may mediate competitive interactions between slimy and deepwater sculpin directly by reducing diet overlap in areas of sympatry or indirectly by causing these fish to select different depth habitats.  相似文献   

9.
Accurate estimates of fish consumption are required to understand trophic interactions and facilitate ecosystem-based fishery management. Despite their importance within the food-web, no method currently exists to estimate daily consumption for Great Lakes slimy (Cottus cognatus) and deepwater sculpin (Myoxocephalus thompsonii). We conducted experiments to estimate gastric evacuation (GEVAC) and collected field data from Lake Michigan to estimate index of fullness [(g prey/g fish weight)100%) to determine daily ration for water temperatures ranging 2–5 °C, coinciding with the winter and early spring season. Exponential GEVAC rates equaled 0.0115/h for slimy sculpin and 0.0147/h for deepwater sculpin, and did not vary between 2.7 °C and 5.1 °C for either species or between prey types (Mysis relicta and fish eggs) for slimy sculpin. Index of fullness varied with fish size, and averaged 1.93% and 1.85% for slimy and deepwater sculpins, respectively. Maximum index of fullness was generally higher (except for the smallest sizes) for both species in 2009–2010 than in 1976 despite reductions in a primary prey, Diporeia spp. Predictive daily ration equations were derived as a function of fish dry weight. Estimates of daily consumption ranged from 0.2 to 0.8% of their body weight, which was within the low range of estimates from other species at comparably low water temperatures. These results provide a tool to estimate the consumptive demand of sculpins which will improve our understanding of benthic offshore food webs and aid in management and restoration of these native species in the Great Lakes.  相似文献   

10.
Due to variability in biotic and abiotic conditions along a vertical gradient within aquatic systems, the vertical distribution of larval fish can profoundly affect their growth and survival. In large systems such as the Great Lakes, vertical distribution patterns also can influence dispersal and ultimately settlement events. The objective was to describe the diel vertical distribution of the larval fish community in the pelagic waters of Lake Michigan and determine which biotic and abiotic factors most strongly influence their vertical distribution. To determine vertical distribution, the upper 27 m of the water column was divided into six discrete depth bins. Larval fish sampling was conducted within each of these depth bins on seven occasions during both day and night. Temperature, light intensity, and prey density also were recorded at depths corresponding to larval fish sampling. Larval fish from five species were collected during the study: alewife (Alosa pseudoharengus), bloater (Coregonus hoyi), burbot (Lota lota), deepwater sculpin (Myoxocephalus thompsonii), and yellow perch (Perca flavecens). Among the five species, we observed three general patterns of depth distribution. Alewife and yellow perch were restricted to the upper strata, whereas the opposite trend was observed for deepwater sculpin. Bloater and burbot larvae were more evenly distributed throughout the upper 27 m, and their pattern of vertical distribution changed between diel periods. Our analysis suggests abiotic factors were more important than biotic factors in structuring the vertical distribution of larval fish in southwestern Lake Michigan, with temperature having the largest influence on distribution of larvae.  相似文献   

11.
Analysis of tissue composition in fish often requires dry samples. Time needed to dry fish decreases as temperature is increased, but additional volatile material may be lost. Effects of 10°C temperature increases on percentage dry mass (%DM) were tested against 60°C controls for groups of lake trout Salvelinus namaycush, rainbow smelt Osmerus mordax, slimy sculpin Cottus cognatus, and alewife Alosa pseudoharengus. Lake trout %DMs were lower at greater temperatures, but not significantly different from 60°C controls. Rainbow smelt and slimy sculpin %DMs were lower at greater temperatures and differences were significant when test temperatures reached 90°C. Significant differences were not found in tests using alewives because variability in %DM was high between fish. To avoid inter-fish variability, 30 alewives were each dried successively at 60, 70, 80, and then 90°C and for all fish %DM declined at each higher temperature. In general, %DMs were lower at greater temperatures and after reaching a stable dry weight, fish did not lose additional mass if temperature remained constant. Results indicate that caution should be used when comparing dry mass related indices from fish dried at different temperatures because %DM was negatively related to temperature. The differences in %DM observed with rising temperature could account for substantial portions of the variability in reported energy values for the species tested. Differences in %DM means for the 60 vs. 80°C and 60 vs. 90°C tests for rainbow smelt and alewife could represent of from 8 to 38% of observed annual energy cycles for Lakes Ontario and Michigan.  相似文献   

12.
Though aquatic ecosystems (and the Laurentian Great Lakes in particular) have faced many stressors over the past century, including fisheries collapses and species invasions, rarely are data available to evaluate the long-term impacts of these stressors on food web structure. Stable isotopes of fish scales from the 1940s to the 2010s in South Bay, Lake Huron were used to quantify trophic position and resource utilization for fishes from offshore (alewife, cisco, lake trout, lake whitefish, rainbow smelt) and nearshore (rock bass, smallmouth bass, white sucker, yellow perch) habitats, providing one of the longest continuous characterizations of food webs in the Laurentian Great Lakes. Mean δ15N and δ13C values for each species were compared across twenty-year time periods. Using directional statistics, no significant community-wide changes were detected between time periods from 1947 to 1999. In contrast, a significant change was detected between 1980-1999 and 2000–2017, with all species showing increased reliance on nearshore resources. The increase in nearshore resource reliance for lake whitefish between these time periods was the greatest in magnitude compared with any other species between any two adjacent time periods. Besides lake whitefish, the increased reliance on nearshore resources was more pronounced for nearshore compared to offshore species. The timing of these shifts coincided with the invasion of dreissenid mussels and round goby, and declines in offshore productivity and prey densities. These results show the unprecedented magnitude of recent food-web change in Lake Huron after 50 years of relative stability.  相似文献   

13.
This study evaluated yellow perch (Perca flavescens) diet in southern Lake Michigan to determine whether prey consumed fluctuated with abundance of zooplankton, benthic invertebrates, and fish species during the period 1984 to 2002. Some change in benthic community abundance was evident from samples collected in the region during the period, including the naturalization of the round goby and the zebra mussel between 1993 and 2002. In addition, changes in fish abundance were evident from 1984 to 2002, when spottail shiner (Notropis hudsonius) and alewife (Alosa pseudoharengus) increased, while yellow perch, and rainbow smelt (Osmerus mordax) declined. Non-indigenous species eaten by yellow perch in 2002 included spiny water fleas (Bythotrephes longimanus), round gobies, and alewives with the latter two species dominating the diet by volume. Yellow perch did exhibit prey preferences, although they consumed a variety of different organisms over the period of study. This euryphagous characteristic of yellow perch is expected to promote its persistence in southern Lake Michigan, despite a changing prey base.  相似文献   

14.
In Lake Michigan, the unintended introduction of invasive species (e.g., zebra mussel, Dreissena polymorpha; quagga mussel, D. rostriformis bugensis; round goby, Neogobius melanostomus) and reduced nutrient loading has altered nutrient dynamics, system productivity, and community composition over the past two decades. These factors, together with sustained predation pressure, have contributed to declines of several forage fish species, including alewife (Alosa pseudoharengus), which has dominated diets of the five primary salmonine species of Lake Michigan for the last 50 years. Salmonines that have inflexible, less complex diets may struggle if alewife declines continue. We analyzed stomach contents of salmonines collected throughout the main basin of Lake Michigan in 2015 and 2016 to investigate diet composition, diet diversity, and individual variation of alewife lengths consumed. Chinook salmon (Oncorhynchus tshawytscha) almost exclusively consumed alewife and had lower diet diversities compared to the other four species, which consumed relatively high frequencies of round goby (brown trout, Salmo trutta; lake trout, Salvelinus namaycush), aquatic invertebrates (coho salmon, Oncorhynchus kisutch) and terrestrial invertebrates (rainbow trout, Oncorhynchus mykiss) along with alewife. Although clear spatio-temporal feeding patterns existed, much of the variation in diet composition and diet diversity was expressed at the individual level. Salmonine populations consumed the entire size range of alewife that were available, whereas individual stomachs tended to contain a narrow range of alewife sizes. Due to their reliance on alewife, it is likely that Chinook salmon will be more negatively impacted than other salmonine species if alewife abundance continues to decline in Lake Michigan.  相似文献   

15.
Thiaminase induced thiamine deficiency occurs in fish, humans, livestock and wild animals. A non-radioactive thiaminase assay was described in 2007, but a direct comparison with the radioactive 14C-thiamine method which has been in use for more than 30 years has not been reported. The objective was to measure thiaminase activity in forage fish (alewife Alosa pseudoharengus, rainbow smelt Osmerus mordax, and slimy sculpin Cottus cognatus) consumed by predators that manifest thiamine deficiency using both methods. Modifications were made to the colorimetric assay to improve repeatability. Modification included a change in assay pH, enhanced sample clean-up, constant assay temperature (37 °C), increase in the concentration of 4-nitrothiophenol (4NTP) and use of a spectrophotometer fitted with a 0.2 cm cell. A strong relationship between the two assays was found for 51 alewife (R2 = 0.85), 36 smelt (R2 = 0.87) and 20 sculpin (R2 = 0.82). Thiaminase activity in the colorimetric assay was about 1000 times higher than activity measured by the radioactive method. Application of the assay to fish species from which no thiaminase activity has previously been reported resulted in no 4NTP thiaminase activity being found in bloater Coregonus hoyi, lake trout Salvelinus namaycusch, steelhead trout Oncorhynchus mykiss or Chinook salmon Oncorhynchus tshawytscha. In species previously reported to contain thiaminase, 4NTP thiaminase activity was measured in bacteria Paenibacillus thiaminolyticus, gizzard shad Dorosoma cepedianum, bracken fern Pteridium aquilinum, quagga mussel Dreissena bugensis and zebra mussels D. polymorpha.  相似文献   

16.
Nearshore regions of lakes are important sources of fish, and can be strongly influenced by anthropogenic inputs of nutrients as well as contaminants. This study characterizes food web structure, mercury concentrations, and biomagnification of mercury in two embayments in northern Lake Victoria that differ in their connectivity to the open lake, trophic status, and the influence of local anthropogenic pollution. Murchison Bay is a semi-confined hypereutrophic bay in a densely populated region, while Napoleon Gulf is mesotrophic and is well flushed with water from the open lake. Based on stable carbon and nitrogen isotope analysis, food web structure was similar at both sites, with short food chains and conspecific fish occupying similar trophic positions. However, there were strong differences in net phytoplankton δ15N and δ13C between sites; net phytoplankton δ13C was largely related to trophic status, while δ15N values appeared to be influenced by inputs of human waste and the prevalence of biological nitrogen fixation. Total mercury (THg) concentrations in fish were consistently below 200 ng/g wet weight, and despite elevated THg concentrations in water in Murchison Bay, THg concentrations in net phytoplankton and fish from both embayments did not differ, highlighting that THg in water is not always a good predictor of concentrations in fish. We also observed that biomagnification of mercury was occurring at a lower rate in Murchison Bay than in Napoleon Gulf, and we propose that the hypereutrophic state of Murchison Bay may be acting to reduce potential Hg exposure for higher trophic level fish.  相似文献   

17.
We surveyed the larval fish community in Lake Superior off the western coast of the Keweenaw Peninsula, Michigan, as a first component in understanding how the Keweenaw Current affects larval fish distribution and survivorship. On transects at Ontonagon, Houghton, and Eagle Harbor, we collected larval fishes with a 1-m diameter plankton net towed through surface and deep (below metalimnion) waters at an inshore location (1 km from shore) and an offshore location (5–9 km from shore) during day and night in 1998 and 1999. The most abundant larvae caught were lake herring (Coregonus artedii), rainbow smelt (Osmerus mordax), burbot (Lota lota), deepwater sculpin (Myoxocephalus thompsoni), and spoonhead sculpin (Cottus ricei). Lake herring was generally most abundant at the surface during the day, while the other four species avoided the surface by day but not at night. Overall, larval fish density was greater inshore than offshore, with exceptions for particular locations and seasonal periods (1.24x for lake herring, 12.93x for rainbow smelt, 1.27x for burbot, 1.25x for deepwater sculpin, and 4.26x for spoonhead sculpin). Differences in the sizes of larvae between inshore and offshore locations, in conjunction with density patterns, suggest a seasonal inshore to offshore movement. Despite the presence of the Keweenaw Current, the overall distribution patterns of larval fishes follow those of previous studies conducted in the Great Lakes, but with lower densities.  相似文献   

18.
The recent invasion of Bythotrephes cederstroemi into the Great Lakes has raised speculation as to its potential effects on the resident food webs. Its long tailspine has been implicated as a post-contact, antipredatory adaptation against small fishes but few field data exist on this subject. Here we present results of gut content analyses on 25 young-of-the-year alewife (Alosa pseudoharengus) and 84 young-of-the-year bloater chub (Coregonus hoyi) collected from Lake Michigan by mid-water trawl during August and September of 1988 and 1990. Alewife of 39.4–59.6 mm and bloater chub of 29.4–55.8 mm standard length contained remains of Bythotrephes. Although limited, these data lower the size range at which alewife and bloater chub in Lake Michigan have been found to eat Bythotrephes. Bythotrephes remains were counted in fish guts by numbers of tailspine kinks and mandible pairs. In bloater chub we found 1.2 times more tailspine kinks than mandible pairs but in alewife guts we found 9.4 times more tailspine kinks than mandible pairs suggesting that tailspine kinks were more strongly retained over mandibles in alewife compared to bloater chub.  相似文献   

19.
Mysis diluviana is an important prey item to the Lake Superior fish community as found through a recent diet study. We further evaluated this by relating the quantity of prey found in fish diets to the quantity of prey available to fish, providing insight into feeding behavior and prey preferences. We describe the seasonal prey selection of major fish species collected across 18 stations in Lake Superior in spring, summer, and fall of 2005. Of the major nearshore fish species, bloater (Coregonus hoyi), rainbow smelt (Osmerus mordax), and lake whitefish (Coregonus clupeaformis) consumed Mysis, and strongly selected Mysis over other prey items each season. However, lake whitefish also selected Bythotrephes in the fall when Bythotrephes were numerous. Cisco (Coregonus artedi), a major nearshore and offshore species, fed largely on calanoid copepods, and selected calanoid copepods (spring) and Bythotrephes (summer and fall). Cisco also targeted prey similarly across bathymetric depths. Other major offshore fish species such as kiyi (Coregonus kiyi) and deepwater sculpin (Myoxocephalus thompsoni) fed largely on Mysis, with kiyi targeting Mysis exclusively while deepwater sculpin did not prefer any single prey organism. The major offshore predator siscowet lake trout (Salvelinus namaycush siscowet) consumed deepwater sculpin and coregonines, but selected deepwater sculpin and Mysis each season, with juveniles having a higher selection for Mysis than adults. Our results suggest that Mysis is not only a commonly consumed prey item, but a highly preferred prey item for pelagic, benthic, and piscivorous fishes in nearshore and offshore waters of Lake Superior.  相似文献   

20.
Lake Ontario supports a diversity of native and non-native salmonids which are managed largely through stocking practices. Ecological changes (e.g., invasive species) altering the food web structure accompanied with shifts in prey abundance, necessitate understanding the trophic niches of Lake Ontario salmonids to aid in management. The objectives of this study were to quantify salmonid (5 species) trophic niches and dietary proportions using stable isotope ratios (δ13C and δ15N) of a large sample set (adult fish (>300?mm; n?=?672) and key offshore prey (5 species, n?=?2037)) collected across Lake Ontario in 2013. Estimates of prey based on stable isotope ratios were similar to stomach contents. Based on stable isotope ratios, non-native prey dominated salmonid diet; in particular alewife (Alosa pseudoharengus) constituted the majority (0.31 to 0.93) of all salmonid diets, and round goby (Neogobius melanostomus) contributed 0.26 and 0.19 of brown trout (Salmo trutta) and lake trout (Salvelinus namaycush) diets, respectively. Trophic niche overlap was high between all salmonids, except lake trout. The largest trophic niche overlap occurred between Chinook (Oncorhynchus tshawytscha), coho (Oncorhynchus kisutch), and Atlantic salmon (Salmo salar), and their reliance on alewife infers a strong pelagic foraging strategy. Lake, brown and rainbow (Oncorhynchus mykiss) trout had larger and/or more distinct trophic niches indicative of a more variable diet across individuals and utilizing different foraging strategies and/or habitats. Overall, Lake Ontario salmonids maintained a high reliance on alewife, and their potential for plasticity in diet provides important information to management regarding population sustainability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号