首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The combustion characteristics of liquefied petroleum gas inside porous heating burners have been investigated experimentally under steady-state and transient conditions. Cooling tubes were embedded in the postflame region of the packed bed of a porous heating burner. The flame speed, temperature profile, and [NOx] and [CO] in the product gases were monitored during an experiment. Due to the heat removal by the cooling tubes, a phenomenon termed metastable combustion was observed; this is that only one flame speed exists at a particular equivalence ratio for maintaining stable combustion within the porous bed of the porous heating burner. This behavior is quite different from that of porous burners without cooling tubes, in which an extended range of flame speeds usually is found for maintaining stable combustion. After metastable combustion has been established in a porous heating burner, a change in the equivalence ratio will stop the metastable combustion and drive the flame out of the packed bed. From the steady-state results, the porous heating burner was shown to maintain stable combustion under fuel-lean conditions with an equivalence ratio lower than the flammability limit of a normal free-burning system. The flame speed in a porous heating burner was found to decrease with an increase in the length of the porous bed. Combustion within a porous heating burner has the features of low flame temperature, extended reaction zone, high preheating temperature and low emissions of NOx and CO. The flame temperature ranged from 1050 to 1250 °C, which is ∼200 °C lower than the adiabatic flame temperature at the corresponding equivalence ratio. The length of the reaction zone could be more than 70 mm and the preheating temperature ranged from 950 to 1000 °C. Both [NOx] and [CO] were low, typically below 10 ppm.  相似文献   

2.
Hydrogen energy is an ideal clean energy to solve the expanding energy demand and environmental problems caused by fossil fuels. In order to produce hydrogen, a double-layer porous media burner with shrunk structure was designed to explore the partial oxidation (POX) of methane. And the combustion temperature, species concentration and reforming efficiency were studied under different shrunk parameters and operating conditions. The results indicated that the shrunk structure greatly influenced the flame position and temperature distribution. The flame moved to the downstream section with the decreasing of the inner shrunk diameter and the increasing of the shrunk height. When the diameter of the filled Al2O3 pellets was 8 mm, the hydrogen yield reached the highest value of 43.8%. With the increasing of equivalence ratio, the reforming efficiency increased first and then decreased, and the maximum value of 53.0% was reached at φ = 1.5. However, the reforming efficiency and axial temperature kept increasing when the inlet velocity increased from 10 to 18 cm/s. The corresponding results provided theoretical reference for the control of flame position and species production by the design of shrunk structure in porous media burner.  相似文献   

3.
Compact reformers can be used to produce hydrogen for fuel-cell automobiles. The heat of the mehane seam reforming reaction is provided by methane burning. Generally, conventional burners have been used in combustion chambers. The Computational Fluid Dynamic (CFD) approach was used for the comparison of conventional burners with metal fiber burners and their locations for the first time. The rate of steam reforming reactions and methane combustion reactions were introduced to the CFD model and the Finite Rate/Eddy Dissipation model was used for reactions on the reforming and combustion sections. After validation of the compact reformer results by available experimental data, metal fiber was modeled using the porous-jump interior boundary condition. The results show that the best burner position for the metal fiber is the Bottom (near the catalyst) and for the conventional burner is the Top (far from the catalyst). The results show that the conventional burner in both the Middle and Bottom positions leads to an increase in the reaction zone temperature above 1200 K, which is higher than the catalyst tolerance, but placing a simple burner on the Top of the reactor does not have an out-of-range temperature problem. The hydrogen mass yield for a conventional burner at the Top position is 27.75% relative to methane. Due to the thermal uniformity in the metal fiber burner, the temperature does not exceed the catalyst limitation in the three positions (Top, Middle, and Bottom). The metal fiber burner at the Bottom of the combustion chamber shows the best performance with a hydrogen mass yield of 40.82%. The results indicate that metal fiber burners can distribute the flame more uniformly than conventional burners and increase the available heat for the reformer side.  相似文献   

4.
Bioethanol as the renewable biomass fuel gradually becomes a promising feedstock for hydrogen production. To improve the efficiency of hydrogen production, a typical double-layer porous media burner was established for the partial oxidation reaction of ethanol (POE). The effects of porous media structure, initial ethanol and air conditions on the temperature distribution and gas production were investigated based on the start-up characteristics of the burner. The results indicate that the lowest start-up time (2400 s) and best hydrogen production (9.80%) were obtained by filling the downstream section with 8 mm Al2O3 pellets and introducing ethanol at the upstream inlet, compared with that of 6 and 10 mm pellets. The productions of methane and hydrogen were improved to some extent by adding the water with 10% fraction. And the highest concentration of hydrogen was achieved at the air velocity of 8 cm/s. When the O2/C ratios were 0.2 and 0.25, the maximum hydrogen yield (23.28%) and ethanol conversion (77.42%) were obtained respectively.  相似文献   

5.
Fluidized beds have seen increasing use for heat-treating steel wires as an environmentally friendly alternative to molten lead heat-treating systems. System upsets can result in defluidization (packed bed condition) in all or portions of the bed, affecting heat transfer rates to the wires. Existing information regarding heat transfer to cylinders in a packed bed is sparse and contradictory when applied to small cylinder sizes appropriate to wire (1–10 mm). This study examines heat transfer to cylinders immersed in packed beds in size ranges appropriate to steel wire heat-treating applications. An appropriate correlation is developed and presented.  相似文献   

6.
The objective of this study to develop and undertake a comprehensive CFD analysis of an effective state-of-the-art 250 kg/day hydrogen generation unit for an on-site hydrogen refueling station (HRS), an essential part of the infrastructure required for fuel cell vehicles and various aspects of hydrogen mobility. This design consists of twelve reforming tubes and one newly designed metal fiber burner to ensure superior emission standards and performance. Experimental and computational modeling steps are conducted to investigate the effects of various operating conditions, the excess air ratio (EAR) at the burner, the gas hourly space velocity (GHSV), the process gas inlet temperature, and the operating pressure on the hydrogen production rate and thermal efficiency. The results indicate that the performance of the steam methane reforming reactor increased significantly by improving the combustion characteristics and preventing local peak temperatures along the reforming tube. It is shown that EAR should be chosen appropriately to maximize the hydrogen production rate and lifetime operation of the reformer tube. It is found that high inlet process gas temperatures and low operating pressure are beneficial, but these parameters have to be chosen carefully to ensure proper efficiency. Also, a high GHSV shortens the residence time and provides unfavorable heat transfer in the bed, leading to decreased conversion efficiency. Thus, a moderate GHSV should be used. It is shown that heat transfer is an essential factor for obtaining increased hydrogen production. This study addresses the pressing need for the HRS to adopt such a compact system, whose processes can ensure greater hydrogen production rates as well as better durability, reliability, and convenience.  相似文献   

7.
The combination of steam reforming and HT-PEMFC has been considered as a proper set up for the efficient hydrogen production. Recycling anode off-gas is energy-saving strategy, which leads to enhance the overall efficiency of the HT-PEMFC. Thus, the recycling effect of anode off-gas on steam-reforming performance needs to be further studied. This paper, therefore, investigated that the combustion of anode off-gas recycled impacts on the steam reformer, which consists of premixed-flame burner, steam reforming and water-gas shift reactors. The temperature rising of internal catalyst was affected by lower heating value of fuels when the distance between catalyst and burner is relatively short, while by the flow rate of fuels and the steam to carbon ratio when its distance is long. The concentration of carbon monoxide was the lowest at 180 °C of LTS temperature, while NG and AOG modes showed the highest thermal efficiency at LTS temperature of 220–300 °C and 270–350 °C, respectively. The optimum condition of thermal efficiency to maximize hydrogen production was determined by steam reforming rather than water gas shift reaction. It was confirmed that the condition to obtain the highest thermal efficiency is about 650 °C of steam reforming temperature, regardless of combustion fuel and carbon monoxide reduction. The difference of hydrogen yield between upper and lower values is up to 1.5 kW as electric energy with a variation of thermal efficiency. Hydrogen yield showed the linear proportion to the thermal efficiency of steam reformer, which needs to be further increased through proper thermal management.  相似文献   

8.
In order to improve the power generation efficiency of fuel cell systems employing liquid fuels, a hybrid system consisting of solid oxide fuel cell (SOFC) and proton exchange membrane fuel cell (PEMFC) is proposed. Utilize the high temperature heat generated by SOFC to reform as much methanol as possible to improve the overall energy efficiency of the system. When SOFC has a stable output of 100 kW, the amount of hydrogen after reforming is changed by changing the methanol flow rate. Three hybrid systems are proposed to compare and select the best system process suitable for different situations. The results show that the combined combustion system has the highest power generation, which can reach 350 kW and the total electrical efficiency is 57%. When the power of the tail gas preheating system is 160 kW, the electrical efficiency can reach 75%. The PEM water preheating system has the most balanced performance, with the electric power of 300 kW and the efficiency of 66%.  相似文献   

9.
A natural gas-based steam reformer for a domestic polymer electrolyte membrane fuel cell (PEMFC) system is thermodynamically analyzed with a special focus on the heat supply mechanism, which is critical to the endothermic steam reforming process. The interdependence of the reforming and combustion processes is evaluated through a characteristic study of heat transfer from the heat source to the reforming zone. Premixed combustion patterns may be affected by the inclusion of controlling means such as a metal fiber screen or burner placement. In this study, we attempted to enhance reforming performances of a reformer embedded in a 5 kW in-house PEMFC through modification of the combustion pattern by varying the type and placement of the burner and other operating conditions. Reforming input conditions such as steam-carbon ratio (SCR) and fuel distribution ratio (FDR) are also analyzed to quantify the overall performance such as thermal efficiency and fuel conversion rate. In our experiments involving three types of combustors—cylindrical metal fiber burner, flat type metal fiber burner and nozzle-mixing burner—the operating conditions are set so that the SCR and FDR are in the range 3.0–4.0 and 0.4–0.7, respectively. It is found that the cylindrical metal fiber burner at an appropriate location could improve thermal efficiency up to 79% by 10%, compared to other devices. This maximum thermal efficiency output is obtained with 0.63 FDR, which eventually yields 99% hydrogen conversion rate when using a cylindrical metal fiber burner, while the other burners produce 95% conversion. These outputs substantiate that the overall efficiency is strongly affected by an appropriate control for uniform temperature distribution on the catalyst layer.  相似文献   

10.
The cogeneration of heat and power by means of a fuel cell based CHP unit is a promising option for efficient residential power supply. For most applications natural gas is used as fuel. One main component of such a CHP unit is a fuel processor in order to generate hydrogen from the natural gas with hydrogen thermal power output of about 6 kW. Usually the steam reforming process is used for hydrogen production. In order to meet the heat demand of the endothermic steam reforming process the fuel processor is equipped with a burner, which has to work with natural gas during start up phase and mainly with the low calorific anodic off gas of the fuel cell stack during normal operation.The presented work is focused on aspects of the main pollutant emissions (carbon monoxide and nitrogen oxide) of burners integrated into the reformer. Experimental investigations of two different burners, which were developed and adapted to the steam reformer requirements, in a real fuel processor environment show, that it is possible to operate both burner concepts with high and low calorific gases with very low pollutant emissions in order to compete with emissions of current heating boilers, which are in the range of 15 mg kWh−1 for CO and of 20 mg kWh−1 for NOx by adjusting suitable excess air ratios in the range of 1.2-1.4.But it is also demonstrated, that the efficiency of the fuel processor is influenced by the excess air ratio. An increase of the air ratio from 1.05 to 1.45 leads to an decrease of the efficiency from 80% to 76%. This results in a conflict of objectives between low pollutant emissions and high system efficiencies. The choice of a suitable burner concept and the definition of a suitable operation strategy can be based on the presented results. Additionally, aspects like fuel processor geometry, flame monitoring, pressure drop in the burner feed gas line as well as in the flue gas duct, investment costs and safety items have also to be considered for the burner selection.  相似文献   

11.
Based on Response Surface Methodology, the experiments of biomass catalytic gasification designed by Design-Expert software were carried out in steam atmosphere and double-bed reactor. The response surface was set up with three parameters (gasification temperature, the content of K-based catalyst in gasification bed and the content of Ni-based catalyst in reforming bed) for biomass gasification performance of carbon conversion efficiency and hydrogen yield to make analysis and optimization about the reaction characteristics and gasification conditions. Results showed that gasification temperature and the content of K-based catalyst in gasification bed had significant influence on carbon conversion efficiency and hydrogen yield, whilst the content of Ni-based catalyst in reforming bed affected the gasification reactions to a large extent. Furthermore, appropriate conditions of biomass steam gasification were 800 °C for gasification temperature, 82% for the content of K-based catalyst in gasification bed and 74% for the content of Ni-based catalyst in reforming bed by the optimization model. In these conditions, the steam gasification experiments using wheat straw showed that carbon conversion efficiency was 96.9% while hydrogen yield reached 64.5 mol/kg, which was in good agreement with the model prediction. The role of the reforming bed was also analyzed and evaluated, which provided important insight that the employment of reforming bed made carbon conversion efficiency raised by 4.8%, while hydrogen yield achieved a relative growth of 50.5%.  相似文献   

12.
A fuel processor was constructed which incorporated two burners with direct steam generation by water injection into the burner exhaust. These burners with direct water vaporization enabled rapid fuel processor start-up for automotive fuel cell systems. The fuel processor consisted of a conventional chain of reactors: auto-thermal reformer (ATR), water gas shift (WGS) reactor and preferential oxidation (PrOx) reactor. The criticality of steam to the fuel reforming process was illustrated. By utilizing direct vaporization of water, and hydrogen for catalyst light-off, excellent start performance was obtained with a start time of 20 s to 30% power and 140 s to full power.  相似文献   

13.
Packed bed tube reactors are commonly used for hydrogen production in proton exchange membrane fuel cells. However, the hydrogen production capacity of methanol steam reforming (MSR) is greatly limited by the poor heat transfer of packed catalyst bed. The hydrogen production capacity of catalyst bed can be effectively improved by optimizing the temperature distribution of reactor. In this study, four types of reactors including concentric circle methanol steam reforming reactor (MSRC), continuous catalytic combustion methanol steam reforming reactor (MSRR), hierarchical catalytic combustion methanol steam reforming reactor (MSRP) and segmented catalytic combustion reactor with fins (MSRF) are designed, modeled, compared and validated by experimental data. It was found that the maximum temperature difference of MSRC, MSRR, MSRP and MSRF reached 72.4 K, 58.6 K, 19.8 K and 11.3 K, respectively. In addition, the surface temperature inhomogeneity Uf and CO concentration of the MSRF decreased by 69.8% and 30.7%, compared with MSRC. At the same reactor volume, MSRF can achieve higher methanol conversion rate, and its effective energy absorption rate is 4.6%, 3.9% and 2.6% higher than that of MSRC, MSRR and MSRP, respectively. The MSRF could effectively avoid the influence of uneven temperature distribution on MSR compared with the other designs. In order to further improve the performance of MSRF, the influences of methanol vapor molar ratio, inlet temperature, flow rate, catalyst particle size and catalyst bed porosity on MSR were also discussed in the optimal reactor structure (MSRF).  相似文献   

14.
This study discusses the influence of fluidization and gasification parameters on the hydrogen composition in syngas. For gasification conditions, when Stage 1 and Stage 2 gasifier temperature is 900 °C, the hydrogen content in syngas is 35.59 mol.% when the activated carbon is used as bed material. For using zeolite as bed material, the hydrogen content is 38.25 mol.%. The hydrogen content is higher than that under other conditions, but if the Steam/Biomass ratio is increased to 0.6, the hydrogen content resulted from zeolite as bed material is the highest 39.38 mol.%. For fluidization parameters, when Stage 2 bed material size is changed to 0.46 mm, no matter the bed material is activated carbon or zeolite, the hydrogen content in syngas is the best among three particle sizes. In terms of operating gas velocity, when gas velocity is 1.5 Umf, the hydrogen content is higher. For fluidization parameters, the two bed materials can increase hydrogen content in syngas effectively in Stage 2 fluidized bed, and their effects are similar to each other. However, considering the fluidization parameters, the hydrogen content in syngas when activated carbon is used as bed material is better than that when the zeolite is used.  相似文献   

15.
In order to evaluate the potential of reforming ammonia as a carbon-free fuel in production of hydrogen, a new configuration of a micro reforming system integrated with a micro-combustor is studied experimentally. The micro-combustor as a heat source is a simple cylinder with an annular-type shield that applies a heat-recirculation concept. A micro-reformer to convert ammonia to hydrogen is an annulus, which is effective to transfer heat from the micro-combustor. The annulus-type micro reforming system is designed to produce 1-10 W (based on lower heating value, LHV) of hydrogen using various catalysts. The feed rate of ammonia, the micro-combustor inlet velocity of fuel-air mixtures and the catalyst materials substantially affect the performance of the designed micro reforming system. Under optimized design and operating conditions, the micro reforming system using ruthenium as a catalyst produces 5.4 W (based on LHV) of hydrogen with a conversion rate of 98.0% and an overall system efficiency of 13.7%. Thus, the present configuration can be applied to practical micro reforming systems, supporting the potential of using ammonia as a clean fuel.  相似文献   

16.
This paper mainly describes the influence of changes in fin structure on the hydrogen production capacity of the methane-steam reforming system. The model of the triangular-fin-tube steam generator was set up. The effects of the fin height (34 mm–46 mm), fin root width (3 mm–6 mm) and the fin-type were studied. As the height of the fin increases (34 mm–46 mm), the CPC temperature at the outlet of the steam generator decreases (the maximum temperature decreases 23.6 K and the average temperature decreases 18.9 K). At the same time, the heat recovery efficiency increased from 96.3% to 98.4%, and so the system hydrogen production increases. As the fin root width increases (3 mm–6 mm), the CPC temperature at the outlet of the steam generator decreases (the maximum temperature decreases 3.7 K and the average temperature decreases 1.2 K). Meanwhile, the heat recovery efficiency increases from 97.5% to 98.1%, and so the system hydrogen production increases. When the fin type is changed from a straight fin to a triangular-fin, the average temperature of the solid particle decreases 30.5 K, the heat recovery efficiency increases by 7.9%, and the system hydrogen production increases.  相似文献   

17.
A dual bed catalyst system consisting of a metallic Ni monolith catalyst in the front followed by a supported nickel catalyst Ni/MgAl2O4 has been studied for the autothermal partial oxidation of methane to synthesis gas. The effects of bed configuration, reforming bed length, feed temperature and gas hourly space velocity on the reaction as well as the stability are investigated. The results show that the metallic Ni monolith in the front functions as the oxidation catalyst, which prevents the exposure of the reforming catalyst in the back to the very high temperature, while the supported Ni/MgAl2O4 in the back functions as the reforming catalyst which further increases the methane conversion by 5%. A typical 5 mmNi monolith–5mmNi/MgAl2O4 dual bed catalyst exhibits methane conversion and hydrogen and carbon monoxide selectivities of 85.3%, 91.5% and 93.0%, respectively, under autothermal conditions at a methane to oxygen molar ratio of 2.0 and gas hourly space velocity of 1.0 × 105 h−1. The dual bed catalyst system is also very stable.  相似文献   

18.
A two-stage fixed bed system was used in the hydrogen production from glycerol reforming. The calcined dolomite catalyst was used in the first fixed bed, and the Nickel-based catalyst was used in the second fixed bed to produce hydrogen from the glycerol steam reforming. The results showed that the hydrogen yield and carbon conversion gradually increased with the temperature increasing. When the temperature exceeded 800 °C, the growth rate of hydrogen yield and carbon conversion decreased. As the space velocity increased, the hydrogen yield and carbon conversion gradually decreased. When the space velocity was greater than 2 h?1, the decline rate of hydrogen yield and carbon conversion decreased rapidly. As the water-to-carbon ratio (S/C) increased, the hydrogen yield and carbon conversion gradually increased. The growth rate of hydrogen yield and carbon conversion became smaller when the S/C was more than 5. Compared with the single-stage fixed-bed reactor, the utilization of two-stage fixed-bed catalytic reaction system can not only increase the hydrogen yield and carbon conversion, but extend the life of the Nickel-based catalyst. Under the optimal reaction conditions, the hydrogen yield is as high as 84.3%, and the carbon conversion is as high as 88.23%.  相似文献   

19.
This study aims to find the evidence that polyethylene terephthalate (PET) is pertinent, with respect to the risk of thermal degradation during fueling, as a liner material of a type-4 composite cylinder for storing 6.8 L of compressed hydrogen. In particular, one type-4 cylinder with the PET liner of thickness 0.6 mm and one type-3 cylinder for comparison have simultaneously undergone 6 cycles of fast fueling (0.15 MPa/s) and fast defueling (0.55 MPa/s) with hydrogen gas in the range of 2 to 45 MPa. The hydrogen temperatures in cylinders, which were measured by a specially-devised thermocouple inserted in each cylinder, change within the range of ?30.0 to 70.0 °C. Although the temperature in the type-4 cylinder rises higher than that in the type-3 cylinder due to the lower heat conductivity of PET, it does not exceed 85 °C, which is the limit set by the international standards, EC No. 79. Furthermore, from the measurements of the deformation by the laser displacement sensors, the type-4 cylinder swells less than the type-3 cylinder. The pressure-displacement analysis shows that the deformation of type-4 cylinders occurs reversibly, i.e., defueling makes the cylinder regain its previous shape. In essence, PET is safe against thermal degradation when applied as a liner of a 6.8 L type-4 cylinder for hydrogen storage.  相似文献   

20.
陈冬林  成珊  贠英  邓涛 《动力工程》2012,(10):765-769,785
提出了一种多段式自预热燃烧器及其4种典型的预热室结构,通过计算流体力学(CFD)方法研究了燃烧室内流场、烟气卷吸率、温度场、燃气燃尽率以及NOx体积分数,并与传统燃烧器的情况进行了对比.结果表明:与传统燃烧器相比,多段式自预热燃烧器改变了燃烧室内流场,对低热值燃料适应性强,其预热室结构同时影响烟气卷吸率和预热效果,并最终影响燃尽率与NOx体积分数;此外,燃烧器负荷对燃尽率影响甚微,但对NOx体积分数影响较大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号