首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hydrogen is expected to play an important role as an energy carrier in the world's future energy systems, as it is environmentally friendly and flexible in use. Hydrolysis of NaBH4 is a promising and effective method, especially for fuel cells and other portable devices, thanks to hydrogen release. Therefore, catalyst research is of great importance in the development of this technology. In this study, Ni/Dolomite catalyst was synthesized by wet impregnation method and used in hydrolysis process. Additionally, the effects of reaction temperature (30–60 °C), nickel content (10–40 wt%), catalyst amount (25–125 mg), NaOH concentration (0.10–0.75 M), and an initial amount of NaBH4 (25–125 mg) on hydrogen yield were investigated. Eventually, the catalyst with 40 wt% Ni content was assigned as the most suitable catalyst, attaining H2 production of 100% with a rate of 88.16 mL H2/gcat.min at 60 °C with 5 mL of 0.25 M NaOH, NaBH4, and Ni/Dolomite catalyst (100 mg).  相似文献   

2.
In this study, the nickel boron (Ni–B) catalyst was studied in the microwave environment for hydrogen production from the hydrolysis of a sodium borohydride solution to release H2. The catalytic activity of the Ni–B catalyst was measured by hydrogen production from the hydrolysis of sodium borohydride. The catalytic properties of the Ni–B catalyst in the microwave medium were examined by considering parameters such as NaOH concentration, NaBH4 concentration, catalyst amount, temperature, and microwave power. Thus, the results obtained from the experiments carried out with Ni–B catalyst both in non-microwave and microwave media were compared. In the experiments, under microwave irradiation, the best result was the release of hydrogen gas from the Ni–B catalyst by applying 100 W of microwave energy at 40 °C. Activation energy values were calculated using the reaction rate constants obtained at different temperatures in the nth order kinetic model and the Langmuir - Hinshelwood model.  相似文献   

3.
This paper reports the experimental results on using TiO2 based Cu(II)-Schiff Base complex catalyst for hydrolysis of NaBH4. In the presence of Cu-Schiff Base complex which we reported in advance [1] and with titanium dioxide supports a novel catalyst named TiO2 supported 4-4′-Methylenbis (2,6-diethyl)aniline-3,5-di-tert-buthylsalisylaldimine-Cu complex is prepared, successfully. The synthesized catalyst was characterized by means of X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), Brunauer-Emmett-Teller Surface Area Analysis (BET) and Fourier Transform Infrared Spectroscopy (FT-IR). The as prepared catalyst was employed to generate hydrogen through hydrolysis reaction of NaBH4. Effects of different parameters (e.g. amount of Cu-Schiff Base complex in all catalyst, percentage of NaBH4, percentage of NaOH, amount of TiO2 supported Cu-Schiff Base complex catalyst and different temperatures) are also investigated. A high apparent activation energy (Ea), 25,196 kJ.mol-1 is calculated for hydrolysis of NaBH4 at 20–50 °C. Hydrogen generation rate was 14,020 mL H2/gcat.min and 22,071 mL H2/gcat.min in order of 30 °C and 50 °C.  相似文献   

4.
The aim of this work is to prepare CoB catalysts supported on raw bentonite (CoB/bentonite) and Na-exchanged bentonite (CoB/Na-bentonite) by the impregnation and chemical reduction method. The prepared catalysts were characterized using X-ray diffractometry (XRD), X-ray fluorescence spectroscopy (XRF), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) techniques. The activities of the catalysts were tested in the hydrolysis reaction of sodium borohydride (NaBH4) in a semi-batch system. The volume of the evolved hydrogen gas was determined by a water displacement method. The effects of catalyst amount, NaOH (a base stabilizer) concentration, NaBH4 concentration and solution temperature on the hydrogen generation rate were investigated. The maximum hydrogen generation rates were determined as 921.94 mL/min.gcat for CoB/bentonite and 1601.45 mL/min.gcat for CoB/Na-bentonite when the 5 wt % NaBH4 and 10 wt % NaOH solutions were used at 50 °C. The activation energies (Ea) of the hydrolysis reaction over CoB/bentonite and CoB/Na-bentonite were determined as 55.76 and 56.61 kJ/mol, respectively.  相似文献   

5.
Hydrogen generation from sodium borohydride (NaBH4) hydrolysis in the presence of metal catalysts is a frequently used and encouraging method for hydrogen storage. Metal nanoparticle-supported catalysts are better recyclability and dispersion than unsupported metal catalysts. In this study, the synthesis and characterization of a polymer-supported catalyst for hydrogen generation using NaBH4 have been investigated. For the synthesis of polymeric material, first of all, kaolin (KLN) clay has been magnetically rendered by using the co-precipitation method (Fe3O4@KLN) and then coated with poly tannic acid (PTA@Fe3O4@KLN). Then, the catalyst loaded with cobalt (Co) nanoparticles have been obtained with the NaBH4 reduction method (Co@PTA@Fe3O4@KLN). The surface morphology and structural properties of the prepared catalysts have been determined using methods such as scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICP-MS) and vibrating sample magnetometer (VSM). The optimization of the most important variables (NaBH4 amount, NaOH amount, catalyst amount, and metal loading rate) affecting the hydrolysis of NaBH4 using the synthesized polymeric catalysts was carried out using response surface methodology (RSM). Depending on the evaluated parameters, the desired response was determined to be hydrogen production rate (HGR, mL/g min). HGR was 1540.4 mL/gcat. min. in the presence of the Co@PTA@Fe3O4@KLN at optimum points obtained via RSM (NaBH4 amount 0.34 M, NaOH amount 7.9 wt%, catalyst amount 3.84 mg/mL, and Co loading rate 6.1%). The reusability performance of the catalyst used in hydrolysis of NaBH4 was investigated under optimum conditions. It was concluded that the catalyst is quite stable.  相似文献   

6.
In the present study, a cobalt-doped catalyst was prepared from chicken eggshell powder (CEP) biowaste to be used in the hydrolysis of sodium borohydride (NaBH4). In the presence of the prepared catalyst (CEPcat), possible effects of the parameters of NaOH concentration (%), catalyst amount (g), NaBH4 concentration (%), process temperature (oC) and reusability affecting the hydrolysis of sodium borohydride were examined. The CEPcat obtained was characterized with FT-IR, TGA, XRD, SEM and EDX analyses. The hydrogen generation rate (HGR) was determined as 432 mL gCo−1 min−1 in the presence of 1 g CEPcat, a CoO/CaO ratio of 10/90 and 1% NaBH4 concentration. The activation energy of the NaBH4 hydrolysis reaction was calculated as 16.78 kJ mol−1. After 16 reuses of the CEPcat there was no significant decrease in the hydrogen volume. Compared to the first use while there was an increase in the HGR. These results showed that the CEPcat prepared has a significant advantage over other catalysts for use in NaBH4 hydrolysis.  相似文献   

7.
A Co/HTNT catalyst is developed by immobilizing Co on the surface of titanate nanotubes. The microstructure and composition of the catalyst are investigated with atomic absorption spectroscopy (AAS), high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Fourier transform infrared spectrometer (FT-IR) and X-ray photoelectron spectroscopy (XPS). The developed Co/HTNT catalyst shows great performance in catalyzing NaBH4 hydrolysis. The hydrolysis of 25 mg NaBH4 catalyzed by 50 mg Co/HTNT in 10 g NaOH solution (12.5 wt%) provides a hydrogen production rate of 1.04 L min?1 gCo?1 at 30 °C, and the activation energy of the reaction is 29.68 kJ mol?1. The high catalytic activity and economical property make this catalyst a promising choice for on-site hydrogen production from NaBH4 hydrolysis.  相似文献   

8.
Proposing a novel catalyst that achieves catalytic hydrolysis of metal hydrides is an important stage in developing a hydrogen storage system. In this study, a cross-linked gel brush-cobalt (0) composite (Co@P4VPGB@PMC) has been synthesized to obtain hydrogen from NaBH4 solution. The morphology, structure, and composition of the obtained catalyst have been characterized by, FTIR, SEM, EDX, BET, XRD, ICP-MS and XPS. The parameters that significantly affect the hydrolysis of NaBH4 (such as NaBH4 concentration, NaOH amount, catalyst amount, and temperature) have been investigated using response surface methodology (RSM), an optimization method that has gained increasing importance in recent years. The hydrogen generation rate (HGR) was 4499 mL/min gcat for Co@P4VPGB@PMC when the NaBH4 amount was 241.52 mM, NaOH amount 5 wt%, catalyst amount 10.55 mg and temperature 58.9 °C. Moreover, the apparent activation energy (Ea) for the catalytic hydrolysis reaction has been 41.27 kJmol-1 obtained under optimum conditions. Additionally, the Co@P4VPGB@PMC catalyst displayed significant reusability performance for up to five cycles without major loss of its activity. Compared with metal catalysts, this new cross-linked polymer gel brush-cobalt catalyst has excellent potential applications for hydrogen production by hydrolysis of metal hydrides due to its simple synthesis, low cost, and the easy availability of raw materials.  相似文献   

9.
In this work, a spherical spider web-like structure RuNi/Ni foam catalyst was prepared for hydrogen evaluation from sodium borohydride (NaBH4) by a combination of electroless plating and electroplating. Microstructure, surface morphology, surface area and elemental composition of the RuNi/Ni foam catalyst were analyzed by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM-EDS and X-ray Photoelectron Spectroscopy (XPS), Brunauere-Emmette-Teller method (BET, AS-1C-VP), respectively. The influences of RuNi with different molar ratios, NaOH concentration, NaBH4 concentration, and solution temperature on the hydrogen production rate were investigated in this paper. The results showed that the RuNi metals were arrayed densely and uniformly on the surface of Ni foam. The average hydrogen production rate is 360 mL min −1 g−1 in 20 wt % of NaBH4, 1 wt% of NaOH at 30 °C in the presence of the RuNi/Ni foam catalysts. The calculated activation energy was 39.96 kJ mol−1 for hydrogen production from sodium borohydride using the RuNi/Ni foam catalyst.  相似文献   

10.
The efficacies of attapulgite clay (ATC)-, titanium dioxide (TiO2)- and silica gel (SG)-supported cobalt–cerium–boron (Co–Ce–B) substances as catalysts were investigated for the alcoholysis and hydrolysis of sodium borohydride (NaBH4) in ethanol–water solutions. Ce served as a helpful co-catalyst among the prepared Co–Ce–B catalysts, and the catalytic activity decreased in the following sequence: TiO2-supported > ATC-supported > SG-supported > unsupported. The effects of Ce/(Co+Ce) molar ratio, ethanol concentration, reaction temperature, NaBH4 concentration and NaOH concentration on the hydrogen production rate were investigated. For the ATC-supported catalyst, when the Ce/(Co+Ce) molar ratio was 10%, the catalyst exhibited the best catalytic activity. Optimal NaBH4 concentration, NaOH concentration and ethanol concentration to promote hydrogen generation rate was around 8 wt.%, 15 wt.% and 30 wt.%, respectively. It can be found that the addition of ATC greatly improved the recycle ability of the catalysts in the multi-cycle tests. The surface morphology of the catalysts before and after the recycle tests was studied from SEM images. The compositions of the catalysts were determined by XRD and EDS analyses. The occurrence of NaB(OH)4 in the alcoholysis by-product provided pertinent indications of ethanol recovery after the tests. The value of activation energy in the hydrogen generation process in the presence of ATC-supported Co–Ce–B catalyst was calculated to be 29.51 kJ/mol. An overall kinetic equation was also proposed.  相似文献   

11.
Stable Ag-Ni bimetallic NPs was prepared, characterized, and applied for the dehydrogenation of sodium borohydride in aqueous media. The structure morphology and properties of Ag-Ni NPs were characterized by using conventional techniques such as surface field scanning electron microscopy (FESEM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), UV–visible spectroscopy, energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy. The Ag-Ni NPs were found to be highly effective catalyst to the hydrogen generation from the hydrolysis of sodium borohydride. The catalytic activity of Ag-Ni was increased with increasing the ratio of Ni (Ag25-Ni25 ˂ Ag25-Ni50 ˂ Ag25-Ni75). The reaction follows first-order kinetics with respect to [NaBH4]. The apparent activation energy = 16.2 kJ/mol, activation enthalpy = 13.4 kJ/mol, and activation entropy = −135.2 J/K/mol were calculated for the hydrogen generation. The activation energy is much lower than those of the other bimetallic nano catalysts. The excellent catalytic activity, good stability, and low cost make the Ag based Ag-Ni NPs a suitable catalyst for the generation of hydrogen in sodium borohydride hydrolysis. It was found that the Ag25-Ni75 is one of the most reusable and durable catalyst for six consecutive cycles without any significant decrease in their catalytic activity.  相似文献   

12.
In this study, it is aimed to investigate hydrogen (H2) generation from sodium borohydride (NaBH4) hydrolysis by multi-walled carbon nanotube supported platinum catalyst (Pt/MWCNT) under various conditions (0–0.03 g Pt amount catalyst, 2.58–5.03 wt % NaBH4, and 27–67 °C) in detail. For comparison, carbon supported platinum (Pt/C) commercial catalyst was used for H2 generation experiments under the same conditions. The reaction rate of the experiments was described by a power law model which depends on the temperature of the reaction and concentrations of NaBH4. Kinetic studies of both Pt/MWCNT and Pt/C catalysts were done and activation energies, which is the required minimum energy to overcome the energy barrier, were found as 27 kJ/mol and 36 kJ/mol, respectively. Pt/MWCNT catalyst is accelerated the reaction less than Pt/C catalyst while Pt/MWCNT is more efficient than Pt/C catalyst, they are approximately 98% and 95%, respectively. According to the results of experiments and the kinetic study, the reaction system based on NaBH4 in the presence of Pt/MWCNT catalyst can be a potential hydrogen generation system for portable applications of proton exchange membrane fuel cell (PEMFC).  相似文献   

13.
Metal-free catalysts (C–KOH–P) containing phosphorus (P) and oxygen (O) prepared by the modification with phosphoric acid (H3PO4) of activated carbon (C–KOH) obtained by activation of Chlorella Vulgaris microalgae with potassium hydroxide (KOH) were investigated for the hydrogen (H2) generation reaction from methanolysis of sodium borohydride (NaBH4). Elemental analysis, XRD, FTIR, ICP-MS, and nitrogen adsorption were used to analyze the characteristics of metal-free catalysts. The results showed that groups containing O and P were attached to the carbon sample. In the study, the hydrogen production rates (HGR) obtained with metal-free C–KOH and C–KOH–P catalysts were 3250 and 10,263 mL/min/g, respectively. These HGR values are better than most values obtained for many catalysts presented in the literature. Besides, relatively low activation energy (Ea) of 27.9 kJ/mol was obtained for this metal-free catalyst. The C–KOH–P metal-free catalyst showed ideal reusability with 100% conversion and a partial reduction in the H2 production studies of NaBH4 methanolysis after five consecutive uses.  相似文献   

14.
In this study, organic waste sources (spent coffee ground (SCG)) is used as metal-free catalyst in comparison with conventional noble-metal catalyst materials for hydrogen generation based on the methanolysis of sodium borohydride solution. Spent coffee ground (SCG) is used as a metal-free catalyst for the first time as treated with different chemicals. The aim is to synthesize the metal-free catalyst that can be used for the production of hydrogen, a renewable energy source. SCG, which was collected from coffee shops, was used for preparing the catalyst. To produce hydrogen by sodium borohydride (NaBH4) methanolysis, SCG is pretreated with different chemical agents (H3PO4, KOH, ZnCl2). According to the acid performances, the choice of phosphoric acid was evaluated at different mixing ratios (10%, 20%, 30%, 40%, 50%, 100%) (w/w), different temperatures (200, 300 and 400 °C) and burning times (30, 45, 60 and 90 min) for the optimization of SCG-catalyst. A detailed characterization of the samples were carried out with the aid of FTIR, SEM, XRD and BET analysis. In this study, the experiments were generally carried out effectively under ambient temperature conditions in10 ml methanol solution containing 0.025 g NaBH4 and 0.1 g of the catalyst. The hydrogen obtained in the experimental studies was determined volumetrically by the gas measurement system. When evaluating the hydrogen volume, different NaBH4 concentrations, catalyst amount and different temperature effects were investigated. The effect of the amount of NaBH4 was investigated with 1%, 2.5%, 5%, and 7.5% ratio of NaBH4 while the influence of the concentration of catalyst was carried-out at 0.05, 0.1, 0.15, and 0.25 g catalysts. Four different temperatures were tested (20, 30, 40, 50 and 60 °C) to explore the performance of the catalyst under different temperatures. The experiments by using SCG-catalyst treated with H3PO4 reveal that the best acid ratio was 100% H3PO4. The maximum hydrogen production rate with the use of SCG-catalyst for the methanolysis of NaBH4 was found to be 8335.5 mL min−1gcat−1. Also, the activation energy was determined to be 9.81 kJ mol−1. Moreover, it was discovered that there was no decline in the percentage of converted catalyst material.  相似文献   

15.
In this study, the metallurgic sludge which contained oil and was obtained as waste of grinding, sharpening and milling parts was used in the production of hydrogen (H2) from sodium borohydride (NaBH4). The hydrolysis of NaBH4 with the metallurgic sludge catalyst was investigated depending on several parameters such as sodium hydroxide (NaOH) concentration, catalyst amount, NaBH4 concentration and temperature. The obtained metallurgic sludge catalyst was characterized by the XRD, FT-IR and SEM techniques and was evaluated for its activity in the H2 generation from NaBH4 hydrolysis. The maximum H2 production rate from the hydrolysis of NaBH4 with the metallurgic sludge catalyst was calculated as 9366 ml min−1.gcat−1. The value of activation energy was found as 48.05 kJ mol−1.  相似文献   

16.
Co–Cu–B, as a catalyst toward hydrolysis of sodium borohydride solution, has been prepared through chemical reduction of metal salts, CoCl2·6H2O and CuCl2, by an alkaline solution composed of 7.5wt% NaBH4 and 7.5wt% NaOH. The effects of Co/Cu molar ratio, calcination temperature, NaOH and NaBH4 concentration and reaction temperature on catalytic activity of Co–Cu–B for hydrogen generation from alkaline NaBH4 solution have been studied. X-ray diffraction (XRD), scanning electron microscope (SEM) and Nitrogen adsorption–desorption isotherm have been employed to understand the results. The Co–Cu–B catalyst with a Co/Cu molar ratio of 3:1 and calcinated at 400 °C showed the best catalytic activity at ambient temperature. The activation energy of this catalytic reaction is calculated to be 49.6 kJ mol−1.  相似文献   

17.
High-purity hydrogen can be generated by hydrolysis of sodium borohydride and used for operating portable proton exchange membrane fuel cells. The monolith supported catalyst is suitable for practical NaBH4-based hydrogen generation system due to its simple reactor structure miniaturizing for small size applications and easy separation from the spent solution. In the present study, a structured catalyst was prepared by wash-coating the Al2O3 sol over the wall of cordierite monolith followed by depositing Pt using incipient wet impregnation method; then the monolithic catalysts were characterized by XRF, XRD, SEM, HRTEM and XPS. The catalytic activity of the Pt-based monolithic catalyst towards hydrolysis of NaBH4 was tested using a flow reactor under ambient conditions in an autothermal manner. The characterization results show that Pt nanoparticles are highly dispersed on the surface of the Al2O3-coated layer. A continuous and stable hydrogen generation can be obtained by feeding the reactant (10 wt% NaBH4–5 wt % NaOH) into the tube reactor loaded with the monolithic catalyst at feed rates of 0.5–2.0 mL min−1.  相似文献   

18.
The development of efficient and non-noble catalyst is of great significance to hydrogen generation techniques. Three surface-oxidized cobalt borides of Co–B–O@CoxB (x = 0.5, 1 and 2) have been synthesized that can functionalize as active catalysts in both alkaline water electrolysis and the hydrolysis of sodium borohydride (NaBH4) solution. It is discovered that oxidation layer and low boron content favor the oxygen evolution reaction (OER) activity of Co–B–O@CoxB in alkaline water electrolysis. And surface-oxidized cobalt boride with low boron content is more active toward hydrolysis of NaBH4 solution. An alkaline electrolyzer fabricated using the optimized electrodes of Co–B–O@CoB2/Ni as cathode and Co–B–O@Co2B/Ni as anode can deliver current density of 10 mA cm−2 at 1.54 V for overall water splitting with satisfactory stability. Meanwhile, Co–B–O@Co2B affords the highest hydrogen generation rate of 3.85 L min−1 g−1 for hydrolysis of NaBH4 at 25 °C.  相似文献   

19.
In this work, different shapes (powder and spherical) of ruthenium-active carbon catalysts (Ru/C) were prepared by impregnation reduction method for hydrogen generation (HG) from the hydrolysis reaction of the alkaline NaBH4 solution. The effects of temperature, amount of catalysts, and concentration of NaOH and NaBH4 on the hydrolysis of NaBH4 solution were investigated with different shapes of Ru/C catalysts. The results show that the HG kinetics of NaBH4 solution with the powder Ru/C catalysts is completely different from that with the spherical Ru/C catalysts. The main reason is that both mass and heat transfer play important roles during the reaction with Ru/C catalysts. The HG overall kinetic rate equations for NaBH4 hydrolysis using the powder Ru/C catalysts and the spherical catalysts are described as r = A exp (−50740/RT) [catalyst]1.05 [NaOH]−0.13 [NaBH4]−0.25 and r = A exp (−52,120/RT) [catalyst]1.00 [NaOH]−0.21 [NaBH4]0.27 respectively.  相似文献   

20.
Nowadays, there is still no suitable method to store large amounts of energy. Hydrogen can be stored physically in carbon nanotubes or chemically in the form of hydride. In this study, sodium borohydride (NaBH4) was used as the source of hydrogen. However, an inexpensive and useful catalyst (Co–Cr–B/CeO2) was synthesized using the NaBH4 reduction method and its property was characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), x-ray photoelectron spectroscopy (XPS) and Brunauer–Emmett–Teller (BET) measurements. The optimized Co–Cr–B/CeO2 catalyst exhibited an excellent hydrogen generation rate (9182 mLgmetal−1min−1) and low activation energy (35.52 kJ mol−1). The strong catalytic performance of the Co–Cr–B/CeO2 catalyst is thought to be based on the synergistic effect between multimetallic nanoparticles and the effective charge transfer interactions between the metal and the support material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号