首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A strategy to enable zero-carbon variable electricity production with full utilization of renewable and nuclear energy sources has been developed. Wind and solar systems send electricity to the grid. Nuclear plants operate at full capacity with variable steam to turbines to match electricity demand with production (renewables and nuclear). Excess steam at times of low electricity prices and electricity demand go to hybrid fuel production and storage systems. The characteristic of these hybrid technologies is that the economic penalties for variable nuclear steam inputs are small. Three hybrid systems were identified that could be deployed at the required scale. The first option is the gigawatt-year hourly-to-seasonal heat storage system where excess steam from the nuclear plant is used to heat rock a kilometer underground to create an artificial geothermal heat source. The heat source produces electricity on demand using geothermal technology. The second option uses steam from the nuclear plant and electricity from the grid with high-temperature electrolysis (HTR) cells to produce hydrogen and oxygen. Hydrogen is primarily for industrial applications; however, the HTE can be operated in reverse using hydrogen for peak electricity production. The third option uses variable steam and electricity for shale oil production.  相似文献   

2.
A solar-wind hybrid trigeneration system is proposed and analyzed thermodynamically through energy and exergy approaches in this paper. Hydrogen, electricity and heat are the useful products generated by the hybrid system. The system consists of a solar heliostat field, a wind turbine and a thermochemical copper-chlorine (Cu-Cl) cycle for hydrogen production linked with a hydrogen compression system. A solar heliostat field is employed as a source of thermal energy while the wind turbine is used to generate electricity. Electric power harvested by the wind turbine is supplied to the electrolyzer and compressors and provides an additional excess of electricity. Hydrogen produced by the thermochemical copper-chlorine (Cu-Cl) cycle is compressed in a hydrogen compression system for storage purposes. Both Aspen Plus 9.0 and EES are employed as software tools for the system modeling and simulation. The system is designed to achieve high hydrogen production rate of 455.1 kg/h. The overall energy and exergy efficiencies of the hybrid system are 49% and 48.2%, respectively. Some additional results about the system performance are obtained, presented and discussed in the paper.  相似文献   

3.
Various configurations of power-to-gas system are investigated as a means for capturing excess wind power in the Emden region of Germany and transferring it to the natural gas grid or local biogas-CHP plant. Consideration is given to producing and injecting low concentration hydrogen admixtures, synthetic methane, or hydrogen/synthetic methane mixtures. Predictions based on time series data for wind generation and electricity demand indicate that excess renewable electricity levels will reach about 40 MW and 45 GW h per annum by 2020, and that it is desirable to achieve a progression in power-to-gas capacity in the preceding period. The findings are indicative for regions transitioning from medium to high renewable power penetrations. To capture an increasing proportion of the growing amount of excess renewable electricity, the following recommendations are made: implement a 4 MW hydrogen admixture plant and hydrogen buffer of 600 kg in 2018; then in 2020, implement a 17 MW hybrid system for injecting hydrogen and synthetic methane (with a hydrogen storage capacity of at least 400 kg) in conjunction with a bio-methane injection plant. The 17 MW plant will capture 68% of the available excess renewable electricity in 2020, by offering an availability to the electricity grid operator of >97% and contributing 19.1 GW h of ‘green’ gas to the gas grid.  相似文献   

4.
Proposing a cost-effective off-grid Hybrid Renewable Energy System (HRES) with hydrogen energy storage with a minimum CO2 emission is the main objective of the current study. The electricity demand of an office building is considered to be supplied by Photovoltaic Panels and wind turbines. The office building, modeled in Energy Plus and Open studio, has annual electricity consumption of 500 MWh electricity. 48.9% of the required electricity can be generated via renewable resources. Considering a system without energy storage, the remaining amount of electricity is generated from diesel generators. Hence, for reducing CO2 emission and fuel costs, a hydrogen energy storage system (ESS) is integrated into the system. Hydrogen ESS is responsible for supplying 38.6% of the demand electricity, which means that it can increase the energy supplying ability of the system from 48.9% to 87.5%. In addition to analyzing the application of the hydrogen storage system, the effect of four different kinds of fuel is considered as well. effects of Natural gas, Diesel, Propane, and LPG on the system's application are investigated in this study. Results indicate that natural gas emits less amount of CO2 compared to other fuels and also has a fuel cost of 3054 $/year, while hydrogen ESS is available. For the renewable system without ESS, the fuel cost rises to 10,266 $/year. However, liquid gas, Propane, and LPG have better performance in terms of CO2 emission and fuel cost, respectively.  相似文献   

5.
Large-scale energy storage methods can be used to meet energy demand fluctuations and to integrate electricity generation from intermittent renewable wind and solar energy farms into power grids. Pumped hydropower energy storage method is significantly used for grid electricity storage requirements. Alternatives are underground storage of compressed air and hydrogen gas in suitable geological formations. Underground storage of natural gas is widely used to meet both base and peak load demands of gas grids. Salt caverns for natural gas storage can also be suitable for underground compressed hydrogen gas energy storage. In this paper, large quantities underground gas storage methods and design aspects of salt caverns are investigated. A pre-evaluation is made for a salt cavern gas storage field in Turkey. It is concluded that a system of solar-hydrogen and natural gas can be utilised to meet future large-scale energy storage requirements.  相似文献   

6.
Septimus   《Energy》2006,31(15):3446-3457
Stored energy can provide electricity during periods of high demand, as currently demonstrated with bulk storage systems such as pumped hydro storage (PHS), which accounts for only 2.5% of the current installed base load in the USA. Sites for future developments have become less available, and environmental siting issues, as well as high costs have stopped further prospects. This paper looks at the potential beyond PHS, with bulk storage systems such as compressed air energy storage (CAES) flow-batteries and 1 MW flywheel systems that can provide system stability/support at the grid, substations and distributed level. Current developments in bulk energy storage will be reviewed as well as some storage project developments incorporating wind energy and the impact on base-loaded coal and natural gas fired GT combined cycle plants. The large potential and the economic benefits for energy storage in the US will be examined.  相似文献   

7.
An optimum design and energy management of various distributed energy resources is investigated in a hybrid microgrid system with the examination of electrical, heating, and cooling demand. This paper suggested an optimal approach to design and operate a microgrid incorporating with battery energy storage, thermal energy storage, photovoltaic arrays, fuel cell, and boiler with minimization of the total operational cost of the hybrid microgrid. Two different hydrogen production methods are considered to assure the advantage of the developed proposed methodology. Furthermore, besides natural gas, residential and municipal wastes are collected and are utilized to produce electricity in fuel cell units. Load growth for different type of loads is also considered. The new number of households are added to the proposed system in different years and the proposed program is determined the optimum size of each employed resources to add each year for satisfying the total demand. To find out the optimum energy management and the optimum capacity of each employed distributed energy resources, a meta-heuristic Particle Swarm Optimization Algorithm is utilized. It is concluded from the results that by utilizing residential waste, the amount of natural gas consumption by fuel cells is reduced about 6.2%, and by utilizing residential plus municipal waste, the reduction is about 26.7%. It is also observed that the amount of CO2 emission is reduced significantly (46.8%) in the case of utilization of produced heat by fuel cells. Finally, the results confirmed the efficacy of the suggested optimal energy management of the hybrid microgrid.  相似文献   

8.
建立负荷在功率约束与需求响应约束下的激励需求响应模型以及含分布式电源、储能与电动汽车的家庭用电模型,在预测模型多时间尺度能量管理的基础上,以最小化用户自身用电费用与买电功率波动的两层目标函数实时优化调整策略。通过实时调整储电池、电动汽车的充放电,从而保证用户购电满足需求相应的要求。最后采用改进的粒子群算法对多时间尺度目标函数进行求解,并且与原始的粒子群算法进行对比,结果表明所提算法可显著降低用户的用电费用与功率波动。  相似文献   

9.
Seasonal storage of hydrogen is a valuable option today increasingly considered in order to optimize cogeneration plants under continuous operation in an incentive framework where electricity sale to the national grids is becoming less economically profitable than in the past. The paper concerns the numerical study and optimization of a cogeneration plant installed in an industrial site having an availability of hydrogen over a continuous time scale, to meet the energy needs and mitigating the environmental impact of the plant operation by reducing the energy withdrawal from traditional sources. Two alternatives are analyzed into detail: the former regards energy production through an internal combustion engine, this last properly controlled to be fueled with blends of natural gas and increasing percentages of hydrogen, the latter concerning the addition of fuel cells to the proposed layout to further reduce the electricity integration by the grid. The dynamic response of the cogeneration system under examination is dynamically evaluated to efficiently fulfill the industrial loads to be fulfilled. First, optimization is performed by implementing a PID controller to better track the industrial demand of electric energy. The main results of this solution reveal a ?81% reduction of excess electricity, a ?7% reduction of natural gas consumed but a 47% raise of CO2 emissions due to the increase in thermal integration. Then, an additional energy generation from fuel cells is assumed. An economic analysis is carried out for each of the implemented configurations. The adoption of fuel cells, despite requiring a greater initial investment, allows obtaining a SPB of 1,4 years (? 16%), 1,17 Mln € of avoided costs (? 18,5%) and 1320 t/year of CO2 emissions avoided (? 95%) with respect to the initial layout.  相似文献   

10.
This paper describes the size optimization of a hybrid photovoltaic/fuel cell grid linked power system including hydrogen storage. The overall objective is the optimal sizing of a hybrid power system to satisfy the load demand of a university laboratory with an unreliable grid, with low energy cost and minimal carbon emissions. The aim is to shift from grid linked diesel power system to a clean and sustainable energy system. The optimum design architecture was established by adopting the energy-balance methods of HOMER (hybrid optimization model for electric renewables). Analysis of hourly simulations was performed to decide the optimal size, cost and performance of the hybrid system, using 22-years monthly averaged solar radiation data collected for Ambrose Alli University, Ekpoma (Lat. 6°44.3ʹN, Long. 6°4.8ʹE). The results showed that a hybrid system comprising 54.7 kW photovoltaic array, 7 kW fuel cell system, 14 kW power inverter and 3 kW electrolyzer with 8 kg hydrogen storage tank can sustainably augment the erratic grid with a very high renewable fraction of 96.7% at $0.0418/kWh. When compared with the conventional usage of grid/diesel generator system; energy cost saving of more than 88% and a return on investment of 41.3% with present worth of $308,965 can be derived in less than 3 years. The application of the optimally sized hybrid system would possibly help mitigate the rural-to-urban drift and resolve the electricity problems hindering the economic growth in Nigeria. Moreover, the hybrid system can alleviate CO2 emissions from other power generation sources to make the environment cleaner and more eco-friendly.  相似文献   

11.
In 2017, as part of an effort to reduce CO2 emissions, Korea declared its plan to increase the contribution of renewables from 9% to 33% of its total installed capacity by 2030. To this end, it is crucial to harmonize the existing low CO2 baseload generators (ie, nuclear power plants) with more variable and uncertain generation sources such as photovoltaic (PV) plants. In this study, we propose a nuclear and renewable hybrid energy system (NHES) configuration that combines the nuclear power fleet, PV plants, and industrial demand response (DR) resources, to address technical and economic issues arising from high penetrations of PV capacity. Employing a day-ahead scheduling method, the effectiveness of harnessing industrial DR as energy storage for Korea's nuclear fleet was evaluated with an emphasis on grid flexibility, operation costs, and CO2 emissions. The findings of this study show how the NHES could broaden Korea's affordable low-carbon paths and technical options, which are promising for short-term applications.  相似文献   

12.
Increasing global energy demand and the continued reliance on non-renewable energy sources, especially in developing countries, will cause continued increases in greenhouse gas emissions unless alternative electricity generation methods are employed. Although renewable energy sources can provide a clean way to produce electricity, the intermittent nature of many existing renewable energy sources, such as energy from the wind or sun, can cause instability in the energy balance. Energy storage systems such as power-to-gas may provide a clean and efficient way to store the overproduced electricity. In this work, a power-to-gas energy storage system coupled with a chemical looping combustion combined-cycle power generation system is proposed to provide base and intermediate load power from the unused electricity from the grid. Enhanced process integration was employed to achieve optimal heat and exergy recovery. The simulation results using ASPEN Plus V8.8 suggest that electric power generation with an overall energy efficiency of 56% can be achieved by using a methane chemical looping combustion power generation process with additional hydrogen produced from a solid oxide electrolysis cell. The proposed system was also evaluated to further improve the system's total energy efficiency by changing the key operating parameters.  相似文献   

13.
The involvement of green hydrogen in energy transformation is getting global attention. This assessment examines the hydrogen production and its utilization potential in one of the hydropower-rich regions, Nepal under various demand growth and technology intervention scenarios by developing a power grid model of 52 nodes and 68 transmission lines operating at an hourly time-step. The model incorporates a grid-connected hydrogen storage system as well as charging stations for electric and hydrogen vehicles. The least-costly pathways for power grid expansion at the nodal and provincial levels are identified through optimization. The results show that 32 GW of installed capacity is required to meet domestic electricity demand and 14 GW more hydropower should be exploited to completely decarbonize the transport sector by 2050. For maintaining 50% shares of hydrogen vehicle in the transport sector and meet government electricity export targets, Nepal requires 5.7 GW, 12 GW and 23 GW of the additional electrolyzer, hydrogen storage tanks and storage-based hydropower capacities respectively. For a given electricity demand, introducing hydrogen systems can reduce the capacity requirements of hydro storage by storing surplus power generated from pondage run-of-the-river and run-of-the-river hydropower during the rainy season and using it in the dry season.  相似文献   

14.
Solar hydrogen production by coupling of pressurized high temperature electrolyser with concentrated solar tower technology is studied. As the high temperature electrolyser requires constant temperature conditions, the focus is made on a molten salt solar tower due to its high storage capacity. A flowsheet was developed and simulations were carried out with Aspen Plus 8.4 software for MW-scale hydrogen production plants. The solar part was laid out with HFLCAL software. Two different scenarios were considered: the first concerns the production of 400 kg/d hydrogen corresponding to mobility use (fuel station). The second scenario deals with the production of 4000 kg/d hydrogen for industrial use. The process was analyzed from a thermodynamic point of view by calculating the overall process efficiency and determining the annual production. It was assumed that a fixed hydrogen demand exists in the two cases and it was assessed to which extent this can be supplied by the solar high temperature electrolysis process including thermal storage as well as hydrogen storage. For time periods with a potential over supply of hydrogen, it was considered that the excess energy is sold as electricity to the grid. For time periods where the hydrogen demand cannot be fully supplied, electricity consumption from the grid was considered. It was assessed which solar multiple is appropriate to achieve low consumption of grid electricity and low excess energy. It is shown that the consumption of grid electricity is reduced for increasing solar multiple but the efficiency is also reduced. At a solar multiple of 3.0 an annual solar-to-H2 efficiency greater than 14% is achieved at grid electricity production below 5% for the industrial case (4000 kg/d). In a sensitivity study the paramount importance of electrolyser performance, i.e. efficiency and conversion, is shown.  相似文献   

15.
This study introduces a novel framework of an electricity and hydrogen supply system integrating with a photovoltaic power station for a residential area. The non-residential parts including the power grid and non-residential vehicles are added to ensure power balance and bring benefits, respectively. The optimal operational strategy of the proposed framework with considering uncertainties is proposed. The objective function minimizes the expected operational cost (EOC) by reducing the imported electricity from the power grid and increasing exported electricity/hydrogen to non-residential vehicles. Additionally, the demand response program (DRP) is applied in the residential load to achieve operational cost reduction. The uncertainties are modeled via various scenarios by using scenario-based stochastic optimization method. Notably, existing research for similar frameworks both lacks the consideration of uncertainties and DRP, and fails to distinguish the residential and non-residential vehicles with different charging behaviors. The results indicate that 1) The feasibility of the proposed framework is validated which can ensure the power balance of the residential area and reduce the operational cost. 2) The EOC is reduced when considering DRP.  相似文献   

16.
The Balmorel model has been used to calculate the economic optimal energy system configuration for the Scandinavian countries and Germany in 2060 assuming a nearly 100% coverage of the energy demands in the power, heat and transport sector with renewable energy sources. Different assumptions about the future success of fuel cell technologies have been investigated as well as different electricity and heat demand assumptions. The variability of wind power production was handled by varying the hydropower production and the production on CHP plants using biomass, by power transmission, by varying the heat production in heat pumps and electric heat boilers, and by varying the production of hydrogen in electrolysis plants in combination with hydrogen storage. Investment in hydrogen storage capacity corresponded to 1.2% of annual wind power production in the scenarios without a hydrogen demand from the transport sector, and approximately 4% in the scenarios with a hydrogen demand from the transport sector. Even the scenarios without a demand for hydrogen from the transport sector saw investments in hydrogen storage due to the need for flexibility provided by the ability to store hydrogen. The storage capacities of the electricity storages provided by plug-in hybrid electric vehicles were too small to make hydrogen storage superfluous.  相似文献   

17.
This paper reports on the feasibility of a hybrid power generation system consisting of a solar energy‐driven Rankine engine and a hydrogen storage unit. Solar energy, the power for the hybrid system, is converted into electrical power through a combination of a solar collector, a tracking device to maintain proper orientation with the sun and a Rankine cycle engine driving an electrical power generator. Excess electricity is utilized to produce hydrogen for storage through electrolysis of water. At the solar down time, the stored hydrogen can be used to produce high‐quality steam in an aphodid burner to operate a turbine and with a field modulated generator to supplement electric power. Case studies are carried out on the optimum configuration of the hybrid system satisfying the energy demand. A numerical example based on the actual measured solar input is also included to demonstrate the design potential. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
As electricity demand can vary considerably and unpredictably, it is necessary to integrate energy storage with power generation systems. This study investigates a solid oxide and molten carbonate fuel cell system integrated with a gas turbine (GT) for power generation. The advanced adiabatic compressed air energy storage (AA-CAES) system is designed to enhance the system flexibility. Simulations of the proposed power system are performed to demonstrate the amount of power that can supply to the loads during normal and peak modes of operation under steady-state conditions. The pressure ratios of the GT and AA-CAES and the additional air feed are used to design the system and analyze the system performance. The results show that a small additional air feed to the GT is certainly required for the hybrid system. The GT pressure ratio of 2 provides a maximum benefit. The AA-CAES pressure ratio of 5 is recommended to spare some air in the storage and minimize storage volume. Moreover, implementation of the GT and AA-CAES into the integrated fuel cell system allows the system to cope with the variations in power demand.  相似文献   

19.
In recent years, hybrid photovoltaic–fuel cell energy systems have been popular as energy production systems for different applications. A typical solar-hydrogen system can be modeled the electricity supplied by PV panels is used to meet the demand directly to the maximum extent possible. If there is any surplus PV power over demand, and capacity left in the tank for accommodating additional hydrogen, this surplus power is supplied to the electrolyser to produce hydrogen for storage. When the output of the PV array is not sufficient to supply the demand, the fuel cell draws on hydrogen from storage and produces electricity to meet the supply deficit.  相似文献   

20.
In the present study, an innovative multigeneration plant for hydrogen and ammonia generation based on solar and biomass power sources is suggested. The proposed integrated system is designed with the integration of different subsystems that enable different useful products such as power and hydrogen to be obtained. Performance evaluation of designed plant is carried out using different techniques. The energetic and exergetic analyses are applied to investigate and model the integrated plant. The plant consists of the parabolic dish collector, biomass gasifier, PEM electrolyzer and hydrogen compressor unit, ammonia reactor and ammonia storage tank unit, Rankine cycle, ORC cycle, ejector cooling unit, dryer unit and hot water production unit. The biomass gasifier unit is operated to convert biomass to synthesis gaseous, and the concentrating solar power plant is utilized to harness the free solar power. In the proposed plant, the electricity is obtained by using the gas, Rankine and ORC turbines. Additionally, the plant generates compressed hydrogen, ammonia, cooling effect and hot water with a PEM electrolyzer and compressed plant, ammonia reactor, ejector process and clean-water heater, respectively. The plant total electrical energy output is calculated as 20,125 kW, while the plant energetic and exergetic effectiveness are 58.76% and 55.64%. Furthermore, the hydrogen and ammonia generation are found to be 0.0855 kg/s and 0.3336 kg/s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号