共查询到20条相似文献,搜索用时 23 毫秒
1.
《International Journal of Hydrogen Energy》2022,47(72):30959-30969
Transition metal carbide such as molybdenum carbide has been widely used in electrolytic water for hydrogen production due to its potential catalytic property. The synthesis of molybdenum carbide-based high-efficient catalysts by simple process remains great challenges. Herein, Mo oxide/carbide material with hybrid morphology was synthesized by carbonizing mixture of lotus roots and Mo salt. The as-obtained material consists of MoO2/Mo2C (MOMC) anchored on biomass-derived nitrogen-doped carbon (NC) matrix. The results show that as-prepared material displays leaf-like and belt-like nanosheets, and the MOMC/NC catalyst with optimal Mo contents exhibits an excellent activity with a low overpotential of 138 mV to drive 10 mA cm?2 and Tafel slope is 56.7 mV dec?1 in alkaline medium, indicating that as-prepared catalyst will have promising application in the field of catalysis. 相似文献
2.
《International Journal of Hydrogen Energy》2019,44(2):965-976
In this study, conductive Ti3C2 MXenes were used as a promoter to accelerate charger transfer of MoS2, realizing highly efficient HER electrocatalysis. A facile hydrothermal strategy is demonstrated to be effective for in situ growth of MoS2 nanosheets vertically standing on planar Ti3C2 nanosheets to form hierarchical heterostructures. Beneficial from the opened layer structures and strong interfacial coupling effect, the resulting MoS2/Ti3C2 heterostructures achieve a giant enhancement in HER activity compared with pristine MoS2 nanosheets. More specifically, the catalytic current density induced by MoS2/Ti3C2 heterostructures at an overpotential of ∼400 mV is nearly 6.2 times as high as that of the pristine MoS2 nanosheets. This work uncovers that the Ti3C2 nanosheets are ideal candidates for construction of highly active electrocatalysts for water splitting. 相似文献
3.
《International Journal of Hydrogen Energy》2020,45(3):1697-1705
Highly efficient and durable non-noble metal-based hydrogen evolution electrocatalysts are critical to advance the production of hydrogen energy via alkaline water electrolysis. Herein, we prepared a novel TiO2@WS2 hybrid via a facile and scalable two-step hydrothermal strategy combined with selective etching. Benefited from acid-etched TiO2 nanobelts with rough surface as substrate, ultrathin WS2 nanosheets nucleated and vertically grew into few layers in the confined configuration with more exposed active edges. Furthermore, the partial incorporation of oxygen in WS2 inherited from the remaining O–W bonds of tungsten precursor enhanced the electrical conductivity of the hybrid. Therefore, TiO2@WS2 hybrid was proved to be efficient and durable electrocatalyst for hydrogen evolution in alkaline medium. Upon optimal conditions, the hybrid only required a small onset overpotential of 95 mV and a low overpotential of 142 mV at 10 mA cm−2, superior to pristine WS2 and TiO2. In addition, better cycling stability during the alkaline HER process was also obtained, indicating its capability in future practical application. The synthesis strategy presents a cost-effective approach to produce efficient WS2-based HER electrocatalyst for electrochemical water splitting. 相似文献
4.
《International Journal of Hydrogen Energy》2022,47(23):11739-11749
Development of electrocatalytic hydrogen production technology is the key to solving environmental and energy problems. Two-dimensional material Mo2TiC2Tx (Tx = –OH, –F) has shown great potential in electrocatalytic hydrogen evolution because of its excellent conductivity and hydrophilicity. However, due to the lack of sufficient active sites of Mo2TiC2Tx itself, its practical applications in electrocatalytic hydrogen evolution are limited. In this work, a highly-efficient hydrogen evolution electrocatalyst, namely Pd@MoS2/Mo2TiC2Tx, is prepared through a simple pyrolysis method. In such a composite, the MoS2 nanoflowers hybridized with the ammonia-treated Mo2TiC2Tx (MoS2/Mo2TiC2Tx) are used as a substrate for loading a small number of Pd nanoparticles (4.27 at.%). Notably, the introduction of Pd nanoparticles into MoS2/Mo2TiC2Tx provides abundant active sites for the hydrogen evolution reaction, improves the conductivity of the electrocatalyst, speeds up the adsorption and desorption of hydrogen, and induces a synergistic effect with the MoS2. As a result, the Pd@MoS2/Mo2TiC2Tx catalyst exhibits excellent electrocatalytic performance and remarkable stability in both acidic and alkaline media. In a 0.5 mol/L H2SO4 electrolyte, the overpotential of Pd@MoS2/Mo2TiC2Tx was 92 mV with a Tafel slope of 60 mV/dec at a current density of 10 mA/cm2. Meanwhile, the catalyst displayed an overpotential of 100 mV associated with a Tafel slope of 80 mV/dec at the current density of 10 mA/cm2 in a 1 mol/L KOH electrolyte. This work shows the great potential of using Mo2TiC2Tx-based material in the field of electrocatalysis. 相似文献
5.
《International Journal of Hydrogen Energy》2022,47(68):29337-29347
Hydrogen is a viable substitute to fossil fuels and electrochemically catalyzed hydrogen evolution has attracted wide attention due to its stability and effectiveness. Nevertheless it is still a major challenge to design and prepare highly active noble metal-free electrocatalysts with controllable structure and composition for efficient hydrogen evolution reaction (HER). Herein, Mo2C regulated by cobalt components (Co and CoO) doping in N-doped hollow carbon nanofibers (marked as Mo2C/Co/CoO-NHCNFs) are firstly designed and prepared via a facile coaxial electrospinning followed by calcination process. The one-dimensional conductive carbon host, hollow structure and synergistic effect among CoO, Co and Mo2C can jointly promote electron transfer, augment exposure of active sites and adjust the electronic structure of the active sites, resulting in the excellent of HER performances. The optimized catalyst has a high specific surface area of 101.27 m2 g?1. Meanwhile, it has a low overpotential of 143 mV at a current density of 10 mA cm?2 and a small Tafel slope of 74 mV dec?1 in 1.0 M KOH.Satisfactorily, the overpotential is reduced by 231 mV at the same current density compared with Mo2C doped in N-doped carbon nanofibers (named as Mo2C-NCNFs). Moreover, the Mo2C/Co/CoO-NHCNFs also demonstrate superior long-term stability. The formative mechanism of Mo2C/Co/CoO-NHCNFs is expounded, and the construction technique is established. The design philosophy and the simple and economical method are of significance for development of HER electrocatalysts. 相似文献
6.
《International Journal of Hydrogen Energy》2020,45(3):1729-1737
Exploiting high-efficient and stable non-precious metal-based electrocatalysts toward hydrogen evolution reaction (HER) is of enormous significance to address the shortage of global power source, but there remain major challenges. Here we present a facile and controllable strategy to synthesize a strongly coupled ultrasmall-cobalt phosphide/nitrogen-doped graphitic carbon (u-CoP@NC) hybrid structure via phosphorization from a porous coordination polymer (PCP) precursor. The PCP-derived u-CoP@NC exhibits remarkable activity and stability for HER, achieving a current density of 10 mA cm−2 with a low overpotential of 131 mV in acidic media and 111 mV in basic media. The corresponding Tafel slopes present in acidic and basic media are 62.7 and 70.3 mV dec−1, respectively. Results reveal that the enhanced electrocatalytic performance of u-CoP@NC originates from the strongly coupled u-CoP nanoparticles and graphitic carbon layer, and the perfect dispersity of the active sites. This research opens up new avenues for designing earth-abundant metal-based electrocatalysts with high capability for water splitting applications. 相似文献
7.
Ultrasmall Mo2C in N-doped carbon material from bimetallic ZnMo-MOF for efficient hydrogen evolution
Yuanyuan Guo Qi Huang Junyang Ding Li Zhong Ting-Ting Li Yue Hu Jinjie Qian Shaoming Huang 《International Journal of Hydrogen Energy》2021,46(2):2182-2190
The exploration and development of cost-effective and highly stable electrocatalysts with the highest possible energy efficiency remain a constant pursuit in the catalyst design and synthesis for electrocatalytic hydrogen evolution reaction (HER). In this work, a convenient approach is proposed to synthesize a type of ultrafine Mo2C nanoparticles in average sizes of 3–4 nm embedded in hierarchically porous N-doped carbon material calcined from bimetallic ZnMo-MI (MI = 2-methylimidazole) is obtained at 1000 °C, denoted as ZnMo-MI-1000. First of all, the crystalline hybrid metal-organic framework of ZnMo-MI is fabricated from zeolitic imidazolate framework of Zn-MI precursors via solvothermal reaction, in which the conversion from Zn-MI to ZnMo-MI occurs gradually over time. After calcination, the as-obtained ZnMo-MI-1000 sample shows a satisfying HER performance with the small overpotential of 83.0 mV in 0.5 M H2SO4 and 100.1 mV in 1.0 M KOH to reach a current density of 10 mA cm?2, which is attributed to ultrasmall Mo2C, Mo and N-doped graphitic carbon matrix. The multiporous network of ZnMo-MI-1000 can provide continuous mass transportation with a minimal diffusion resistance that produce effective electrocatalytic kinetics in both acidic and alkaline media, which is utilized as a highly active and durable nonprecious metal electrocatalyst for HER. 相似文献
8.
《International Journal of Hydrogen Energy》2023,48(54):20577-20587
Developing high-efficiency electrocatalysts viable for pH-universal hydrogen evolution reaction (HER) has attracted great interest because hydrogen is a promising renewable energy carrier for replacing fossil fuels. Herein, we present a facile strategy for fabricating ultra-fine Ru nanoparticles (NPs) decorated V2O3 on the carbon cloth substrates as efficient and stable pH-universal catalysts for HER. Benefiting from the metallic property and electronic conductivity of V2O3 matrix, the optimized hybrid (Ru/V2O3-CC) exhibits excellent HER activities in a wide pH range, achieving lower overpotentials of 184, 219, and 221 mV at 100 mA cm−2 in 0.5 M H2SO4, 1.0 M KOH and 1.0 M phosphate-buffered saline, respectively. Moreover, the electrode remains superior stability with negligible degradation after 5000 cyclic voltammetry scanning whether in acidic, alkaline or neutral media. Experimental results, combined with theoretical calculations, demonstrate that the interaction between Ru NPs and the support V2O3 induces the local electronic density diversity, allowing optimization of the adsorption energy of Ru towards hydrogen intermediate H1, thus favoring the HER process. 相似文献
9.
《International Journal of Hydrogen Energy》2020,45(38):19133-19143
Activating the inert basal planes of layered molybdenum disulfide (MoS2) is critical to deliver its high hydrogen evolution reaction (HER) efficiency. Herein, oxygen-incorparated MoSx with abundant undercoordinated Mo atoms is fabricated by a facile solvothermal procedure, which realizes synergistically structural and electronic regulations of MoS2 inert basal planes. Experiment results reveal that oxygen incoparation can effectively modulate the electronic structure and further optimize the intrinsic conductivity, while the defect-rich structure with abundant undercoordinated Mo atoms increases the number of active sites. Moreover, the influence of solvothermal temperature on activity of MoS2-x is also investigated. The achieved MoSx electrocatalyst prepared at 220 °C exhibits a superior activity for HER with a low overpotential of 191 mV at 10 mA cm−2, a small Tafel slope of 67 mV dec−1, and an excellent stability due to the largest surface area and superior conductivity. 相似文献
10.
《International Journal of Hydrogen Energy》2022,47(67):28915-28923
Molybdenum carbide is regarded as a noble metal-free and highly efficient electrocatalyst for hydrogen evolution reaction (HER) owing to its appropriate intermediate binding energy and Pt-like d orbital structure. It's an advanced method doping Ni, Zn, N, P and other atoms to further enhance the electrocatalytic performance of Mo2C, but the content of general doping elements is uncontrollable and cannot be accurately measured. In this work, we employ a unilateral Tris-functionalized Anderson polyoxomolybdate [H3NiMo6O21{(CH2O)3CNH3}]3- as a precursor for the first time to prepare Mo2C nanoparticles. The POMs were mixed with chitosan (CS) in aqueous solution and carbonized at high temperature to abtain highly dispersed N, Ni-doped Mo2C nanoparticles. The final electrocatalyst shows enhanced HER performance and good electrochemical stability. This article offers a feasible preparation of doped catalytic materials and extends the application of polyoxometalates. 相似文献
11.
《International Journal of Hydrogen Energy》2020,45(51):27114-27128
Herein, we report the one-step synthesis of pure phase molybdenum carbide (Mo2C and MoC) nanoparticles via the in-situ carburization reduction route without using any reducing agent. The X-ray diffraction (XRD) results confirm the formation of pure phase Mo2C and MoC at 800 °C for 8 h and 15 h respectively. The as-synthesized powders have been investigated for hydrogen production and energy storage applications. The pure phase Mo2C shows high performance towards the hydrogen evolution reaction (HER) with a Tafel slope of 129.7 mV dec−1 however, MoC exhibits a low activity towards HER with a Tafel slope of 266 mV dec−1. Both the phases show high stability up to 5000 cyclic voltammetry (CV) cycles in the potential range of 0–0.4 V. In the case of MoC, the specific capacitance increases during the initial 2000 CV cycles which may be attributed to the electrode activation during the CV test. The Mo2C powder shows a double layer capacitance (Cdl) value of 2.47 mF cm−2 and a specific capacitance of 2.24 mF g−1. The MoC phase shows a higher Cdl value of 8.99 mF cm−2 and a specific capacitance of 8.17 mF g−1. 相似文献
12.
《International Journal of Hydrogen Energy》2020,45(23):12691-12701
Recent research suggests that molybdenum carbide (β-Mo2C) has the potential to be a cheap and active substitute for Pt-based electrocatalyst for hydrogen evolution reaction. In this article molybdenum carbide (Mo2C) electrocatalysts immobilized on carbon support were synthesized and evaluated for hydrogen evolution reaction (HER). The quantity of Mo in the samples was varied to understand the effect of Mo content in Mo2C/C electrocatalyst on the structure, morphology, electrochemical properties and HER. The Mo weight percentages determined by ICP-OES technique in four Mo2C/C samples prepared were found as ~9.3, 15.8, 20.4 and 28.0. SAXS studies revealed that the pore size of the carbon increased with an increase in Mo content, most probably to accommodate the Mo2C motifs. X-ray photoelectron spectra showed that the amount of low valent Mo increased as we increased the Mo content up to 20 wt % but decreased in the 28 wt % sample. All the samples were active for electrochemical HER with the sample having ~20 wt % Mo showing the highest activity and exhibited a Tafel slope of 69 mVdec−1. Among all samples the 20 wt% Mo sample exhibited the highest electrochemical surface area (ECSA) of ~2.92 mFcm−2 and minimum charge transfer resistance for the HER. Thus, it is concluded that 20 wt% Mo in Mo2C/C electrocatalyst evolves with ideal pore size, highest ECSA, smooth charge transfer and thus exhibits the best electrochemical properties for HER. 相似文献
13.
《International Journal of Hydrogen Energy》2020,45(46):24312-24321
Developing high performance, good stability and noble-metal-free electrocatalysts for renewable hydrogen evolution reaction (HER) remain a substantial challenge. Herein, we introduce a novel facile one-step in-situ strategy through pyrolysis for the synthesis of Co2P nanoparticles encapsulated Boron, Nitrogen, and Phosphorous tri-doped carbon nanotubes (Co2P/BNP-CNTs). The synergetic effect between Co2P nanoparticles and heteroatom doped CNTs contributes to the remarkable HER performance. The Co2P/BNP-CNT-900 electrocatalyst shows a low overpotential of 133 mV at a current density of 10 mA cm−2 and a small Tafel slope of 90 mV dec−1 in 0.1 M KOH media. More importantly, the Co2P/BNP-CNT-900 electrocatalyst exhibits superior long-term stability in alkaline solution at −0.25 V versus Reversible Hydrogen Electrode (RHE) for 15 h and up to 1000 cycles with negligible performance loss. Overall, our works suggest a one-pot facile synthesis strategy for rational designing high-performance electrocatalysts with enhanced HER performance. 相似文献
14.
《International Journal of Hydrogen Energy》2019,44(41):22926-22935
Herein, we report the Cu(0)-based nanoparticles film generated by in situ electrochemical reductions of Cu(II) ions modified silica exhibits a high activity and durable HER catalyst in acid solution. Copper ions were attached to silica surface using chemical modification with propyl ethylene diamine (PEDA) linker followed by treating with copper sulfate solution to form Cu(II)-PEDA/silica complex. Copper nanoparticles then were obtained by electrochemical reduction of the silica immobilized Cu(II) ions in sulfuric acid solution. The physicochemical properties of the resulted from copper nanoparticles incorporated silica were investigated and analyzed by Energy Dispersive x-ray Spectroscopy (EDS), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction XRD, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM). The electrochemical characterizations confirm that the Cu(0) nanoparticles supported on silica substrate combining both high activity and stability for hydrogen evolution reaction with overpotential(η), of 200 mV and Tafel slope of 67 mV/dec could serve as Cu-based electrocatalysts in practical applications for hydrogen production in 0.5 M of H2SO4 solution.The catalyst exhibited respectable stability and steadily produced hydrogen at several potentials. The catalyst has the perspective to expressively lower the cost of manufacturing hydrogen fuel, thus helping to spread the use of hydrogen fuel which does not harm the environment. 相似文献
15.
《International Journal of Hydrogen Energy》2022,47(67):28924-28931
Molybdenum silicides are promising electrocatalysts for hydrogen evolution in acidic environment due to their dual characteristics of metal and ceramics as well as high electrical conductivity and acid resistance. At present, most of the transition metal silicides were synthesized at high temperature, resulting in large particle size and small specific surface area, which seriously limits their electrocatalytic applications. Herein, we report a low temperature strategy for the synthesis of ultrafine Mo5Si3 and MoSi2 nanoparticles with diameter of ~5 nm by molten salt method. Results show that both of them demonstrated excellent electrocatalytic hydrogen evolution activity and stability in 0.5 M H2SO4 solution, in which the overpotentials of Mo5Si3 and MoSi2 nanoparticles at 10 mA cm?2 are 80 mV and 94 mV, respectively. This general strategy may light up the preparation of ultrafine transition metal silicides nanoparticles and facilitate their applications in electrocatalytic areas. 相似文献
16.
《International Journal of Hydrogen Energy》2022,47(4):2366-2377
MoS2 electrocatalyst exhibits a significant potential to substitute platinum in hydrogen evolution reaction (HER), but its immobilization on practical supports is still challenging. Herein, a facile hydrothermal method is developed for in-situ immobilizing MoS2 nanosheets on titanium nanotubes (TNTs) support. Easy to mount electrodes with a uniform and dense layer of MoS2 on TNTs are achieved. An overpotential of ?200 mVRHE is ample to deliver ?10 mA/cm2 from an acidic medium. This overpotential is much lower than those of the electrodes developed by drop-casting MoS2 on TNTs, glassy carbon (274 mV), and in-situ immobilized on Ti foil (264 mV). The results revealed that the synergy between the in-situ immobilized MoS2 and TNTs enhances the electrochemical surface area and the adsorption capacity of hydronium ions. The electronic interaction between MoS2 and TNTs facilitates the mobility of electrons and reduces the charge transfer resistance at the electrode/electrolyte interface. 相似文献
17.
Zhuo Guo Tianshuai Sun Yahui Li Hailan Kang Yuhan Che Yan Zhang Jinlin Lu 《International Journal of Hydrogen Energy》2018,43(51):22905-22916
In this work, mesoporous WS2 with high surface area was prepared by hard template method. First, a one-step nanocasting generates metal precursor@mesoporous silica SBA-15 composites. A hydrothermal method is subsequently adopted to convert the precursors to sulfides in the confined nanochannels. After etching silica SBA-15, mesoporous layered metal sulfide crystals were obtained as the products. Then, we have put forward a new catalyst based on mesoporous WS2, RGO nanosheets and Pt nanoparticles as a highly efficient electrocatalyst for hydrogen evolution. The Pt/WG-2 nanostructure electrocatalyst in this report exhibits excellent performance with a small Tafel slope of 47 mV dec?1, long-term durability and an overpotential of 95 mV in 0.5 M H2SO4 for the hydrogen evolution reaction (HER). 相似文献
18.
Xianpei Ren Qiang Ma Pinyun Ren Yonghua Wang 《International Journal of Hydrogen Energy》2018,43(32):15275-15280
Benefiting from improved electrical conductivity, the N-doped MoSe2 nanosheets show substantially enhanced HER activity with a lower onset overpotential of approximately ?135 mV and a smaller Tafel slope of 62 mV dec?1, which exhibiting enhanced catalytic performance compared with that of pure MoSe2. The success of improving the HER performance via the introduction of N dopant offers a new opportunity in the development of high performance MoSe2-based electrocatalyst. 相似文献
19.
《International Journal of Hydrogen Energy》2023,48(25):9163-9171
Developing an efficient and stable electrocatalyst for hydrogen evolution reaction (HER) remains critically signi?cance for renewable hydrogen production. Herein, a facile electrochemical reduction method was proposed to fabricate Ru nanoparticles (NPs) evenly anchored on Ti3C2Tx nanosheets (Ti3C2Tx-NS) electrocatalyst (Ru@Ti3C2Tx-NS). Interestingly, owing to the interaction between Ru NPs and Ti3C2Tx-NS, the resultant Ru@Ti3C2Tx-NS electrocatalyst performed a Pt-like electrocatalytic property for HER under the acidic solution with an ultra-low overpotential of 46.75 mV to reach ?10 mA/cm2, a small Tafel slope of 30.6 mV/dec, and long-term stability. Simultaneously, the Ru@Ti3C2Tx-NS also displayed splendid HER electrocatalytic performance in the basic condition. Furthermore, Ru@Ti3C2Tx-NS showed a lower value of Gibbs free energy for HER (?0.21 eV) than either pure Ru or Ti3C2Tx-NS from the theoretical calculation results. It is expected that such a promising approach would be extended to design and fabricate other noble metal NPs anchored MXene nanosheets for HER application. 相似文献
20.
《International Journal of Hydrogen Energy》2020,45(41):21221-21231
Non-precious transition metal electrocatalysts with high catalytic performance and low cost enable the scalable and sustainable production of hydrogen energy through water splitting. In this work, based on the polymerization of CoMoO4 nanorods and pyrrole monomer, a heterointerface of carbon-wrapped and Co/Mo2C composites are obtained by thermal pyrolysis method. Co/Mo2C composites show considerable performance for both hydrogen and oxygen evolution in alkaline media. In alkaline media, Co/Mo2C composites show a small overpotential, low Tafel slope, and excellent stability for water splitting. Co/Mo2C exhibits a small overpotential of 157 mV for hydrogen evolution reaction and 366 mV for oxygen evolution reaction at current density of 10 mA cm−2, as well as a low Tafel slope of 109.2 mV dec−1 and 59.1 mV dec−1 for hydrogen evolution reaction and oxygen evolution reaction, respectively. Co/Mo2C composites also exhibit an excellent stability, retaining 94% and 93% of initial current value for hydrogen evolution reaction and oxygen evolution reaction after 45,000 s, respectively. Overall water splitting via two-electrode water indicates Co/Mo2C can hold 91% of its initial current after 40,000 s in 1 M KOH. 相似文献