首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, a numerical analysis of the production of hydrogen via autothermal (ATR) steam methane reforming (SMR) is presented. The combustion reaction occurs over a Pt/Al2O3 catalyst, and the reforming reaction is operated using a Ni/Al2O3 catalyst inside the same cylindrical channel. A novel configuration with18 catalytic-bed macro-patterns alternately mounted, referred to as SDB, is designed and compared with the catalytic dual-bed reactor (conventional configuration), referred to as CDB, at the same operating temperature and pressure conditions of 900 °C and 14 bars, respectively. The results showed that hydrogen yield was improved by 4.5% compared to the conventional configuration, while a decrease of 67 °C of the highest temperature was noticed. Meanwhile, the methane conversion was 63.73% and 65.44% for the CDB and SDB configurations, respectively. Furthermore, the length of the reactor can be decreased by 27%, keeping the same hydrogen yield at the outlet of the conventional reactor, indicating a potential reduction in hydrogen cost.  相似文献   

2.
High-purity hydrogen can be generated by hydrolysis of sodium borohydride and used for operating portable proton exchange membrane fuel cells. The monolith supported catalyst is suitable for practical NaBH4-based hydrogen generation system due to its simple reactor structure miniaturizing for small size applications and easy separation from the spent solution. In the present study, a structured catalyst was prepared by wash-coating the Al2O3 sol over the wall of cordierite monolith followed by depositing Pt using incipient wet impregnation method; then the monolithic catalysts were characterized by XRF, XRD, SEM, HRTEM and XPS. The catalytic activity of the Pt-based monolithic catalyst towards hydrolysis of NaBH4 was tested using a flow reactor under ambient conditions in an autothermal manner. The characterization results show that Pt nanoparticles are highly dispersed on the surface of the Al2O3-coated layer. A continuous and stable hydrogen generation can be obtained by feeding the reactant (10 wt% NaBH4–5 wt % NaOH) into the tube reactor loaded with the monolithic catalyst at feed rates of 0.5–2.0 mL min−1.  相似文献   

3.
In this study methane autothermal reforming (ATR) was investigated over Ni/Al2O3 and Ni/Al2O3–CeO2 catalysts. The catalyst carriers were prepared through a facile one-step method, which produced mesoporous nanocrystalline carriers for Ni catalysts. The samples were characterized by XRD, TPR, BET, TPO and SEM characterization techniques and the catalytic activity and stability were also studied at different conditions (GHSV and feed ratio) in methane ATR. It was found that the nickel catalyst supported on 3 wt.% Ce–Al2O3 exhibited higher activity compared to the catalysts supported on the Al2O3 and promoted Al2O3 with 1 and 6 wt.% Ce. The results also showed that the nickel catalyst supported on 3 wt.% Ce–Al2O3 possessed the highest resistance against carbon deposition in ATR reaction.  相似文献   

4.
In recent times, glycerol has been employed as feedstock for the production of syngas (H2 and CO) with H2 as its main constituent. This study centers on dry reforming of glycerol over Ag-promoted Ni/Al2O3 catalysts. Prior to characterization, the catalysts were synthesized using the wet impregnation method. The reforming process was carried out using a fixed bed reactor at reactor operating conditions; 873–1173 K, carbon dioxide to glycerol ratio of 0.5 and gas hourly space velocity (WHSV) in the range of 14.4 ≤ 72 L gcat−1 h−1). Ag (3)-Ni/Al2O3 gave highest glycerol conversion and hydrogen yield of 40.7% and 32%, respectively. The optimum conditions which gave highest H2 production, minimized methane production and carbon deposition were reaction temperature of 1073 K and carbon dioxide to glycerol ratio of 1:1. This result can attributed to the small metal crystallite size characteristics possessed by Ag (3)–Ni/Al2O3, which enhanced metal dispersion in the catalyst matrix. Characterization of the spent catalyst revealed the formation of two types of carbon species; encapsulating and filamentous carbon which can be oxidized by O2.  相似文献   

5.
A catalytic membrane reactor equipped with Pd–Ag metallic membranes and loaded with PdZn/ZnAl2O4/Al2O3 catalytic pellets was tested for the methanol steam reforming reaction (S/C = 1) aimed at producing a pure hydrogen stream for PEM fuel cell feeding. The catalyst was prepared in two steps. First, commercial γ-Al2O3 pellets were impregnated with ZnCl2 and calcined at 700 °C to obtain a ZnAl2O4 shell, and subsequently impregnated with PdCl2 and reduced at 600 °C to obtain PdZn alloy nanoparticles. The catalyst was tested both in a conventional packed bed reactor and in a catalytic membrane reactor. A 3D CFD non-isothermal model with mass transfer limitations was developed and validated with experimental data. The reactions of methanol steam reforming, reverse water-gas shift and methanation were modeled under different pressure, temperature and feed load values. The model was used to study and simulate the CMR under different operation conditions.  相似文献   

6.
Despite industrial application of methane as an energy source and raw material for chemical manufacturing, it is a potent heat absorber and a strong greenhouse gas. Evidently reduction of methane emission especially in the natural gas sector is essential. Methane to hydrogen conversion through non-thermal plasma technologies has received increasing attention. In this paper, catalytic methane conversion into hydrogen is experimentally studied via nano-second pulsed DBD plasma reactor. The effect of carrier gas flow, applied voltage, and commercial Ni–K2O/Al2O3 catalyst loading on methane conversion, hydrogen production, hydrogen selectivity, discharge power, and energy efficiency are studied. The results showed that in the plasma alone system, the highest methane conversion and hydrogen production occurs at argon flow rate of 70 mL/min. Increase in the applied voltage increases the methane conversion and hydrogen production while it decreases the energy efficiency. Presence of 1 g Ni–K2O/Al2O3 catalyst shifts the optimum voltage for methane conversion and hydrogen production to 8 kV, reduces the required power, and increases the energy efficiency of the process. Finally in the catalytic plasma mode the optimum process condition occurs at the argon flow rate of 70 mL/min, applied voltage of 8 kV, and catalyst loading of 6 g. Compared with the optimum condition in the absence of catalyst, presence of 6 g Ni–K2O/Al2O3 catalyst increased the methane conversion, hydrogen production, hydrogen selectivity and energy efficiency by 15.7, 22.5, 7.1, and 40% respectively.  相似文献   

7.
《Journal of power sources》2006,159(2):1296-1299
Hydrogen production by steam reforming of methanol is studied over Cu/Zn-based catalysts (Cu/ZnO, Cu/ZnO/Al2O3, Cu/ZnO/ZrO2/Al2O3). Cu/Zn-based catalysts are derived from hydrotalcite-like precursors prepared by a co-precipitation method. The catalysts are characterized by N2O chemisorption, XRD, and BET surface area measurements. ZrO2 added to the Cu/Zn-based catalyst enhances copper dispersion on the catalyst surface. Among the catalysts tested, Cu/ZnO/ZrO2/Al2O3 exhibits the highest methanol conversion and the lowest CO concentration in the outlet gas. A micro-channel reactor coated with a Cu/ZnO/ZrO2/Al2O3 catalyst in the presence of an undercoated Al2O3 buffer layer exhibits higher methanol conversion and lower CO concentration in the outlet gas than in the absence of an undercoated Al2O3 buffer layer. The micro-channel reactor with a undercoated Al2O3 buffer layer produces large amounts of hydrogen compared with one without a buffer layer. The undercoated Al2O3 buffer layer enhances the adhesion between catalysts and micro-channel walls, which leads to improvement in reactor performance.  相似文献   

8.
This study investigates hydrogen production by thermo-catalytic steam methane reforming over lanthanum strontium cobalt ferrite supported Nickel (Ni/LSCF) and commercial Ni/αAl2O3 catalysts. The Ni/LSCF catalyst was synthesized using wet impregnation method and characterized by XRD, TEM, SEM, EDX, N2-physisorption analysis, and H2-TPR. The characterization analyses show that Ni/LSCF and Ni/αAl2O3 possess the required physicochemical properties to catalyze the steam methane reforming reaction. The activity of the Ni/LSCF catalyst in steam methane reforming at 750 °C, 800 °C, and 850 °C resulted in CH4 conversions of 73.46%, 78.67%, and 87.56%, respectively. In addition, hydrogen (H2) yields of 64.34%, 72.57%, and 82.56% were obtained from the steam methane reforming at 750 °C, 800 °C, and 850 °C, respectively over the Ni/LSCF catalyst. The Ni/LSCF catalyst was found to have higher activities in term of CH4 conversion and H2 yield compare to the commercial Ni/αAl2O3. However, the stability test conducted at 480 min time on stream (TOS) revealed that the commercial Ni-αAl2O3 was more stable in the steam methane reforming than the Ni/LSCF catalyst. The characterization of the used catalysts by TEM, XRD and TGA shows evidence of carbon deposition mostly on the used Ni/LSCF catalyst.  相似文献   

9.
Alumina prepared by the sol-gel method, was impregnated with zirconia (5, 15 and 30 wt.%). Subsequently, the resulting Al2O3–ZrO2 supports were impregnated with 15% Ni to obtain the Ni/Al2O3–ZrO2 catalysts. The obtained catalysts were characterized by BET, SEM, XRD, H2-TPR and TPD- CO2. The catalytic activity was studied by means of dry reforming of methane (DRM) for syngas production. The catalysts displayed different physicochemical properties and trends of their catalytic activity as a function of the ZrO2 content in the mixed oxide supports. For instance, ZrO2 (5 wt %) in the catalyst, led to enhanced concentration of the medium strength basic sites and increased specific surface area, yielding thus the best performance in the DRM, with low carbon deposition after 36 h of reaction, compared with the other catalysts. This indicates that during the DRM reaction, this catalyst can provide more surface oxygen to prevent carbon deposits that could deactivate the catalyst.  相似文献   

10.
Catalytic methane decomposition was investigated over 40 wt% Fe/Al2O3 catalyst in fluidized bed reactor (FLBR). After optimization of FLBR conditions in terms of catalyst bulk density, particle size, minimum fluidization velocity, and the catalyst bed height, the catalyst activity and stability tests were conducted by comparison with a fixed bed reactor (FBR). Although a similar stable methane conversion was obtained over both reactors, the pressure drop during 35 min operation of FBR was 9 times higher than that of FLBR, which indicated the possibility of continuous operation of methane decomposition process over FLBR. Further, the influence of the space velocity, feed dilution and regeneration on catalysts reactivity was studied in FLBR to conclude that a reaction condition of 12 L/gcat∙h, feed of 20%H2–80%CH4 and CO2-regeneration of deactivated catalysts may be favourable for operating methane decomposition in FLBR continually and effectively to provide stable hydrogen.  相似文献   

11.
Exploiting Ni-based catalysts with excellent catalytic activity and anti-coking ability is significant for dry reforming of CH4 with CO2 (DRM) which is a promising route to CO2 utilization. In this work, the Ni/Al2O3 catalyst with hydrotalcite precursor (NiAl-LDH) was synthesized by a facile in-situ growth method. And the effect of the NiAl-LDH structure on the catalytic activity and anti-coking ability of Ni/Al2O3 catalyst was revealed. The H2-temperature programmed desorption (H2-TPD) revealed that better Ni dispersion and more Ni–Al2O3 interface could be obtained by the NiAl-LDH precursor, which were vital for the activation of CH4 and CO2. Moreover, the NiAl-LDH precursor with non-LDH phase or turbostratic structure was also created by insufficient or extra amount of urea, and the obtained catalysts exhibited a poor catalytic stability, further confirming the importance of the LDH structure. In comparison with the Ni-IMP catalyst prepared by the conventional impregnation method, the CH4 conversion increased by 16% and the carbon deposition decreased by 75% over Ni-6 catalyst with well-organized LDH precursor under the same reaction conditions. Hence, this work represents an important step toward developing Ni-based catalysts with excellent catalytic activity and anti-coking ability for DRM with the LDH precursor.  相似文献   

12.
Thermocatalytic decomposition of methane (TCD) is reported to be a promising and green route of hydrogen generation, however, the relatively fast catalyst deactivation is the main drawback of this technology. This article reports an attempt to increase the catalyst deactivation time by using Cu promoted Ni-based catalyst, and methanol premixed methane gas as a feedstock. The catalysts were prepared by wet impregnation method and characterized by TGA, BET, XRD, TPR, FESEM, Raman and TEM. An inevitable decline in surface area from 5.15 to 4.52 m2g-1 due to the addition of 15%Cu on 50%Ni/Al2O3 was due to the agglomeration of particles and pore blockage of γ -Al2O3 support. Moreover, the reduction of NiO was shifted towards lower temperature by successful impregnation of Cu promoter. The overlapping peaks of NiO and CuO confirmed the formation of mixed oxides Nix Cu (1-x) O via XRD analysis. The catalytic activity of both catalysts showed that 50%Ni-15%Cu/Al2O3 resulted in better methane conversion 75% at 1023 K TOS for 6 h. The post reaction analysis of the catalysts revealed that carbon in the form of CNF got deposited on the surface of the catalyst having amorphous and crystalline morphology. Finally, TEM also revealed that GF, CNF, and MWCNF were encapsulated over the surface of 50%Ni-15%Cu/Al2O3.  相似文献   

13.
Mo-promoted alumina supported Ni catalysts were prepared through a conventional impregnation method and tested in dry reforming of methane (DRM) at temperatures from 550 to 850 °C. The catalysts were characterized by means of H2-temperature programmed reduction (H2-TPR), CO2-temperature programmed desorption (CO2-TPD), X-ray diffraction (XRD), N2 physisorption and Raman spectroscopy. Mo-promotion caused a reduction in the DRM catalytic activity. The weaker interaction between NiO species and the alumina support, the formation of a MoNi4 phase, and the lower basicity of this Ni-Mo/Al2O3 catalyst were identified as the main causes for its lower activity. However, pre-reducing the Ni-Mo/Al2O3 catalyst at temperatures lower than 700 °C, instead of 900 °C, resulted in a considerable increase of its catalytic activity. This was mainly due to the formation of a separate Ni0 phase that did not interact with Mo and to an increase in medium strength basicity.  相似文献   

14.
Steam reforming of liquid hydrocarbon fuels is an appealing way for the production of hydrogen. In this work, the Rh/Al2O3 catalysts with nanorod (NR), nanofiber (NF) and sponge-shaped (SP) alumina supports were successfully designed for the steam reforming of n-dodecane as a surrogate compound for diesel/jet fuels. The catalysts before and after reaction were well characterized by using ICP, XRD, N2 adsorption, TEM, HAADF-STEM, H2-TPR, CO chemisorption, NH3-TPD, CO2-TPD, XPS, Al27 NMR and TG. The results confirmed that the dispersion and surface structure of Rh species is quite dependent on the enclosed various morphologies. Rh/Al2O3-NR possesses highly dispersed, uniform and accessible Rh particles with the highest percentage of surface electron deficient Rh0 active species, which due to the unique properties of Al2O3 nanorod including high crystallinity, relatively large alumina particle size, thermal stability, and large pore volume and size. As a consequent, Rh/Al2O3-NR catalyst exhibited superior catalytic activity towards steam reforming reactions and hydrogen production rate over other two catalysts. Especially, Rh/Al2O3-NR catalyst showed the highest hydrogen production rate of 87,600 mmol gfuel?1 gRh?1min?1 among any Rh-based catalysts and other noble metal-based catalysts to date. After long-term reaction, a significant deactivation occurred on Rh/Al2O3–NF and Rh/Al2O3-SP catalysts, due to aggregation and sintering of Rh metal particles, coke deposition and poor hydrothermal stability of nanofibrous structure. In contrast, the Rh/Al2O3-NR catalyst shows excellent reforming stability with negligible coke formation. No significantly sintering and aggregation of the Rh particles is observed after long-term reaction. Such great catalyst stability can be explained by the role of hydrothermal stable nanorod alumina support, which not only provides a unique environment for the stabilization of uniform and small-size Rh particles but also affords strong surface basic sites.  相似文献   

15.
In this paper, a series of alkaline earth metals oxides doped Ni/La2O3–Al2O3 catalysts were synthesized by the coprecipitation method combined with two step impregnation methods. n-decane reforming was used to investigate these catalysts, in order to develop an excellent catalyst with better hydrogen selectivity, activity, stability, as well as lower carbon deposition. Deactivation by carbon deposition, the catalyst regenerability and stability tests were also used to weigh the selected catalyst. These catalysts are characterized by N2 adsorption-desorption, XRD, NH3-TPD, Raman, and TEM. The introduction of alkaline earth metals modifiers enhances the activity, stability and anti-coking ability, meanwhile the SrO modified Ni/La2O3–Al2O3 shows the best catalytic activity. Moreover, the hydrogen selectivity and conversion over regenerative Ni/La2O3–Al2O3/SrO catalysts were quite close to the results of fresh ones. The enhancements of M oxides doped catalysts (especially Sr) can be due to the improved textural properties, basicity, metal-support interaction and anti-coking ability. As a consequence, loading different metals in different ways helps to gradually improve the stability, activity and coking inhibition of catalysts is an effective approach to obtain a multi-function catalyst.  相似文献   

16.
Ni/Pd-co-promoted Al2O3–La2O3 catalysts for selective hydrogen production from polyethylene terephthalate (PET) plastic waste via steam reforming process has been investigated. The catalysts were prepared by impregnation method and were characterized using XRD, BET, TPD-CO2, TPR-H2, SEM, TGA and DTA. The results showed that Ni-Pd-co-impregnated Al2O3–La2O3 catalyst has excellent activity for the production of hydrogen with a prolong stability. The feed conversion of 87% was achieved over 10% Ni/Al2O3 catalyst which increased to 93.87% in the case of 10% Ni-1% Pd/Al2O3–La2O3 catalysts with an H2 fraction of 0.60. The catalyst performance in term of H2 selectivity and feed conversion was further investigated under various operating parameters, e.g., temperatures, feed flow rates, feed ratios and PET concentrations. It was found that the temperature has positive effects on H2 selectivity and conversion, yet feed flow rate has the adverse effects. In addition, PET concentrations showed improved in H2 selectivity in comparison to when only phenol as a solvent was involved. The Ni particles, which are the noble-based active species are more effective, thus offered good hydrogen production in the PET steam reforming process. Incorporation of La2O3 as support and Pd as a promoter to the Ni/Al2O3 catalyst significantly increased catalyst stability. The Ni–Pd/Al2O3–Al2O3 catalyst showed remarkable activity even after 36 h along with the production of carbon nanotubes, while H2 selectivity and feed conversion was only slightly decreased.  相似文献   

17.
A distributed mathematical model for thermally coupled membrane reactor that is composed of three channels is developed for methane steam reforming. Methane combustion takes place in the first channel on a Pt/δ–Al2O3Pt/δAl2O3 catalyst layer that supplies the necessary heat for the endothermic steam reforming reaction. In the second channel, catalytic steam reforming reactions take place in the presence of Ni/MgO–Al2O3 catalyst. The combustion catalyst forms a thin layer next to the reactor wall to minimize the heat transfer resistance. Selective permeation of hydrogen through the palladium membrane is achieved either by co-current or counter-current flow of sweep gas through the third channel. The burner is modeled as a monolith reactor and the reformer is assumed to behave as a pseudo-homogenous reactor. The mass and energy balance equations for the thermally coupled membrane reactor form a set of 22 coupled ordinary differential equations. With the application of appropriate boundary conditions, the distributed reactor model for steady-state operation is solved as a boundary value problem. The model equations are discretized using spline collocation on finite elements. The discretized nonlinear modeling equations, along with the boundary conditions, form a system of algebraic equations that are solved using the trust region dogleg method. The performance of the reactor is numerically investigated for various key operating variables such as inlet fuel concentration, inlet steam/methane ratio, inlet reformer gas temperature and inlet reformer gas velocity. Simulations for both the co-current and the countercurrent flow modes are also performed using different sweep gas flow rates. For each case, the reactor performance is analyzed based on methane conversion and hydrogen recovery yield.  相似文献   

18.
Nanocrystalline calcium aluminate (CaO.2Al2O3) was prepared by a simple co-precipitation method using Poly (ethylene glycol)-block-poly(propylene glycol)-block poly(ethylene glycol) (PEG-PPG-PEG, MW:5800) as surfactant and employed as catalyst support for nickel catalysts in methane reforming with carbon dioxide. The prepared samples were characterized by X-ray diffraction (XRD), N2 adsorption (BET), Temperature programmed reduction and oxidation (TPR-TPO) and Scanning electron microscopy (SEM) techniques. The results showed that the prepared support has a high potential as support for nickel catalysts in methane reforming with carbon dioxide. The results showed high catalytic activity and stability for the prepared catalysts. Among the prepared catalysts 15% Ni/CaO.2Al2O3 was the most active catalyst and showed the highest affinity for carbon formation. In addition, 7% Ni/CaO.2Al2O3 possessed high catalytic stability during 50 h time on stream. The TPO analysis revealed that increasing in nickel content increased the amount of deposited carbon over the spent catalysts. SEM results detected only whisker type of carbon for all spent catalysts.  相似文献   

19.
Autothermal reforming of methane includes steam reforming and partial oxidizing methane. Theoretically, the required endothermic heat of steam reforming of methane could be provided by adding oxygen to partially oxidize the methane. Therefore, combining the steam reforming of methane with partial oxidation may help in achieving a heat balance that can obtain better heat efficacy. Membrane reactors offer the possibility of overcoming the equilibrium conversion through selectively removing one of the products from the reaction zone. For instance, only can hydrogen products permeate through a palladium membrane, which shifts the equilibrium toward conversions that are higher than the thermodynamic equilibrium. In this study, autothermal reforming of methane was carried out in a traditional reactor and a Pd/Ag membrane reactor, which were packed with an appropriate amount of commercial Ni/MgO/Al2O3 catalyst. A power analyzer was employed to measure the power consumption and to check the autothermicity. The average dense Pd/Ag membrane thickness is 24.3 μm, which was coated on a porous stainless steel tube via the electroless palladium/silver plating procedure. The experimental operating conditions had temperatures that were between 350 °C and 470 °C, pressures that were between 3 atm and 7 atm, and O2/CH4 = 0–0.5. The effects of the operating conditions on methane conversion, permeance of hydrogen, H2/CO, selectivities of COx, amount of power supply, and the carbon deposition of the catalyst after the reaction is thoroughly discussed in this paper. The experimental results indicate that an optimum methane conversion of 95%, with a hydrogen production rate of 0.093 mol/m2. S, can be obtained from the autothermal reforming of methane at H2O/CH4 = 1.3 and O2/CH4 near 0.4, at which the reaction does not consume power, and the catalysts are not subject to any carbon deposition.  相似文献   

20.
The effect of different pellet sizes of nickel (Ni) and lanthanum (La) promoted Al2O3 support on the catalytic performance for selective hydrogen production from polyethylene terephthalate (PET) plastic waste via steam reforming process has been investigated. The catalysts were prepared by impregnation method and were characterized using XRD, BET, TPD-CO2, TPR, SEM, EDX, TEM and TGA. The results showed that NiLa-co-impregnated Al2O3 catalyst has excellent activity for the production of hydrogen. Feed conversion of 88.53% was achieved over 10% Ni/Al2O3 catalyst which increased to 95.83% in the case of 10% Ni-5% La/Al2O3 catalysts with a H2 selectivity of 70.44%. The catalyst performance in term of gas production and feed conversion was further investigated under various operating parameters, e.g., feed flow-rate, and catalyst pellet size. It was found that at 0.4 ml/min feed flow rate, highest feed conversion and H2 selectivity were achieved. The Ni particles, which are the noble-based active species are highly effective, thus offered good hydrogen production in the phenol-PET steam reforming process. Incorporation of La as a promoter in Ni/Al2O3 catalyst has significantly increased the catalyst reusability with prolonged stability. The NiLa/Al2O3 catalyst with larger size showed remarkable activity due to the presence of significant temperature gradients inside the pellet compared to smaller size. Additionally, the catalyst showed only slight decrease in H2 selectivity and feed conversion even after 24 h, although production of carbon nanotubes was evidenced on its surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号