首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
槽式太阳能热发电在浑善达克沙地的应用可行性分析   总被引:1,自引:0,他引:1  
使用太阳能发电模拟软件SAM3.0.3.0对在浑善达克沙地建造50MW槽式太阳能热发电站进行可行性分析。对该热电站在不同系统组合条件下的运行状况进行模拟。分析了太阳能辐射强度、地理位置、蓄热设备容量、冷却方式和辅助能源等因素对该类型电站经济性的影响。模拟结果表明:在浑善达克沙地建立50MW槽式热发电站(6h蓄热,水冷,天然气辅助热源)的上网电价可达到0.727$/kWh,另外,单位集热面积每年可减排CO2307kg。  相似文献   

2.
Solar energy is an attractive renewable energy source because the sun's energy is plentiful and carbon-free. However, solar energy is intermittent and not suitable for base load electricity generation without an energy backup system. Concentrated solar power (CSP) is unique among other renewable energy options because it can approach base load generation with molten salt thermal energy storage (TES). This paper describes the development of an engineering economic model that directly compares the performance, cost, and profit of a 110-MW parabolic trough CSP plant operating with a TES system, natural gas-fired backup system, and no backup system. Model results are presented for 0–12 h backup capacities with and without current U.S. subsidies. TES increased the annual capacity factor from around 30% with no backup to up to 55% with 12 h of storage when the solar field area was selected to provide the lowest levelized cost of energy (LCOE). Using TES instead of a natural gas-fired heat transfer fluid heater (NG) increased total plant capital costs but decreased annual operation and maintenance costs. These three effects led to an increase in the LCOE for PT plants with TES and NG backup compared with no backup. LCOE increased with increasing backup capacity for plants with TES and NG backup. For small backup capacities (1–4 h), plants with TES had slightly lower LCOE values than plants with NG backup. For larger backup capacities (5–12 h), plants with TES had slightly higher LCOE values than plants with NG backup. At these costs, current U.S. federal tax incentives were not sufficient to make PT profitable in a market with variable electricity pricing. Current U.S. incentives combined with a fixed electricity price of $200/MWh made PT plants with larger backup capacities more profitable than PT plants with no backup or with smaller backup capacities. In the absence of incentives, a carbon price of $100–$160/tonne CO2eq would be required for these PT plants to compete with new coal-fired power plants in the U.S. If the long-term goal is to increase renewable base load electricity generation, additional incentives are needed to encourage new CSP plants to use thermal energy storage in the U.S.  相似文献   

3.
Hydrogen is one of the energy carriers that can be produced using different techniques. Combining multiple energy sources can enhance hydrogen production and meet other electrical demands. The hybrid arrangement allows the produced hydrogen to be stored and used when the electrical energy sources are not adequate. In this study, utilizing the meteorological data was investigated using HOMER (Hybrid Optimization of Multiple Energy Resources) software for the optimal solution. The results demonstrated that the “best-optimized system has 270 kW of photovoltaic (PV), 1 unit of 300 kW of wind turbine (WT), 500 kW of electrolyzer, 100 kg/L of the hydrogen tank, 70 units of 1 kWh lithium-ion battery, and 472 kW of the converter. The selected hybrid energy system has the lowest Levelized cost of energy (LCOE), Levelized cost of hydrogen (LCOH), and net present cost (NPC) of $/kg 0.6208, $/kg 9.34, and $ 484,360.00 respectively which judged the system to be the best choice for the proposed hydrogen project in AI-Kharj. This investigation will help stakeholders and policymakers optimize hybrid energy systems that economically meet the hydrogen production and refueling station demands of the AI-Kharj community.  相似文献   

4.
The rapidly growing of population in the developing countries and their lack of access to electricity, especially in the remote or rural areas, is causing huge challenges for on energy production. Energy is an enabler and a reliable energy supply is critical to sustainable socio-economic development for any nation. Most of Chad's people live in villages with no particular power supply system. Exploiting renewable energies is the only means of fostering development and improving people's welfare. This paper attempts at proposing an energy profile and storage model for Chad in vast remote towns. The paper addresses the key energy gap that is hindering on the development of such systems, it models and assess the potential on electricity generation and using hydrogen as surplus power storage system. A techno-econo-environmental survey on a solar-wind hybrid system in 25 towns in Chad is undertaken using NASA data and HOMER Software. Several hybrid scenarios of energy production and storage is analyzed. The results showed that in the electricity generation scenario, the average total NPC for the studied stations was $ 48164 and the average LCOE was $0.573. The lowest LCOE was related to Aouzou station with 0.507 $/kWh and the highest LCOE was obtained for Bol station with 0.604 $/kWh. In the simultaneous electricity and hydrogen generation scenario, the cheapest hydrogen ($4.695/kg) was produced in the “Grid” scenario, which was the same for all of the stations, with a total NPC of $2413770. The most expensive hydrogen ($4.707/kg) was generated in the “Grid-Wind” scenario and Bol stations with a total NPC of $2420186. The paper develops cost effective models for all hybrid systems combination for both electricity and hydrogen generation across Chad. These findings could help policy makers, investors and other developmental agencies make informed choices on energy access for sustainable development for rural communities in Sub Saharan Africa.  相似文献   

5.
Proposing a cost-effective off-grid Hybrid Renewable Energy System (HRES) with hydrogen energy storage with a minimum CO2 emission is the main objective of the current study. The electricity demand of an office building is considered to be supplied by Photovoltaic Panels and wind turbines. The office building, modeled in Energy Plus and Open studio, has annual electricity consumption of 500 MWh electricity. 48.9% of the required electricity can be generated via renewable resources. Considering a system without energy storage, the remaining amount of electricity is generated from diesel generators. Hence, for reducing CO2 emission and fuel costs, a hydrogen energy storage system (ESS) is integrated into the system. Hydrogen ESS is responsible for supplying 38.6% of the demand electricity, which means that it can increase the energy supplying ability of the system from 48.9% to 87.5%. In addition to analyzing the application of the hydrogen storage system, the effect of four different kinds of fuel is considered as well. effects of Natural gas, Diesel, Propane, and LPG on the system's application are investigated in this study. Results indicate that natural gas emits less amount of CO2 compared to other fuels and also has a fuel cost of 3054 $/year, while hydrogen ESS is available. For the renewable system without ESS, the fuel cost rises to 10,266 $/year. However, liquid gas, Propane, and LPG have better performance in terms of CO2 emission and fuel cost, respectively.  相似文献   

6.
Until now, there is no internationally accepted guideline for the measurement, data exchange and analysis of PV–Wind Hybrid Systems. As there is a need for such a tool, so as to overcome the barrier that the lack of confidence due to the absence of reliability means for the development of the market of Hybrid Systems, an effort has been made to suggest one tool for PV–Wind Hybrid Systems. The suggested guidelines presented in this work are based on the existing guidelines for PV Systems, as a PV–Wind Hybrid system can be roughly thought of as a PV System to which wind generation has been added. So, the guidelines for PV Systems are valid for the PV–Wind System, and only the part referred to wind generation should be included. This has been the process followed in this work. The proposed method is applied to a case study, the CICLOPS Project, a 5 kW PV, 7.5 kW Wind Hybrid system installed at the Isolated Wind Systems Test Site that CIEMAT owns in CEDER (Soria, Spain). This system has been fully monitored through a year and the results of the monitoring activity, characterizing the long-term performance of the system are shown in this work.  相似文献   

7.
Renewable energy resources play a very important rule these days to assist the conventional energy systems for doing its function in the UAE due to high greenhouse gas (GHG) emissions and energy demand. In this paper, the analysis and performance of integrated standalone hybrid solar PV, fuel cell and diesel generator power system with battery energy storage system (BESS) or supercapacitor energy storage system (SCESS) in Khorfakkan city, Sharjah were presented. HOMER Pro software was used to model and simulate the hybrid energy system (HES) based on the daily energy consumption for Khorfakkan city. The simulation results show that using SCESS as an energy storage system will help the performance of HES based on the Levelized cost of energy (LCOE) and greenhouse gas (GHG) emissions. The HES with SCESS has renewable fraction (68.1%) and 0.346 $/kWh LCOE. The HES meets the annual AC primary load of the city (13.6 GWh) with negligible electricity excess and with an unmet electrical load of 1.38%. The reduction in GHG emissions for HES with SCESS was 83.2%, equivalent to saving 814,428 gallons of diesel.  相似文献   

8.
Concentrating solar power (CSP) is considered as a comparatively economical, more efficient, and large capacity type of renewable energy technology. However, CSP generation is found restricted only to high solar radiation belt and installed where high direct normal irradiance is available. This paper examines the viability of the adoption of the CSP system in a low sun belt region with a lower direct normal irradiance (DNI). Various critical analyses and plant economics have been evaluated with a lesser DNI state. The obtained results out of the designed system, subjected to low DNI are not found below par, but comparable to some extent with the performance results of such CSP plants at a higher DNI. The analysis indicates that incorporation of the thermal energy storage reduces the levelized cost of energy (LCOE) and augments the plant capacity factor. The capacity factor, the plant efficiency, and the LCOE are found to be 32.50%, 17.56%, and 0.1952 $/kWh, respectively.  相似文献   

9.
This research work crucially deals with a techno-economic feasibility study for off-grid solar photovoltaic fuel cell (PV/FC) hybrid systems. The hybrid renewable energy system is investigated for feeding electric to remote areas and isolated urban regions in Egypt. To achieve this goal, all the system equipment are modeled, simulated and the area under study data is gathered. The objective function is formulated depending on the total annual cost (TAC). The Flower Pollination Algorithm (FPA), as an efficient recent metaheuristic optimization method, proposed to estimate the optimum number of both PV panels and the FC/electrolyzer/H2 storage tanks set mandatory where the least total net present value (TNPV) is reached.The loss of power supply probability (LPSP) is considered to enhance the performance of the proposed design. The effect of the variation of FC, electrolyzer, H2 storage tanks and the PV power system initial cost on the levelized cost of energy (LCOE) is presented through a comprehensive sensitivity analysis.Through Matlab™ program, the numerical simulation results obtained by the FPA algorithm have been compared to the corresponding outcomes while using the artificial bee colony (ABC) and the Particle Swarm Optimization (PSO) techniques. According to the simulation outcomes analysis, the FPA Algorithm has the less fulfillment time and good rendering between the other algorithms. In addition, the optimum system configuration is acquired using FPA with the optimal hybridization of 27 solar PV, 28 FCs, 58 electrolyzers and 37 H2 storage tanks for an LPSP and PEE of 1.52% and 4.68% respectively. The system TNPV is $3,244,897 with the LCOE of 0.334 $/kWh.  相似文献   

10.
分析了风光互补发电系统的技术优势,设计了基于固态变压器结构的并网型风光互补发电系统。分别建立了光伏系统,风力发电系统,超级电容和蓄电池的模型,并分析各环节的控制策略,提出了基于平均功率的储能设备容量配置方法。仿真结果表明,该系统能模拟风光互补系统在不同模式下的运行特性,可以有效降低功率波动和维持电压稳定,并能在低光照强度、低风速等情况下为系统提供短时能量支撑。  相似文献   

11.
High cost of renewable energy systems has led to its slow adoption in many countries. Hence, it is vital to select an appropriate size of the system in order to reduce the cost and excess energy produced as well as to maximize the available resources. The sizing of hybrid system must satisfy the LPSP (Loss of Power Supply Probability) which determines the ability of the system to meet the load requirements. Once the lowest configurations are determined, the cost of the system must then be taken into consideration to determine the system with the lowest cost. The optimization methodology proposed in this paper uses the ANFIS (Adaptive Neuro-Fuzzy Inference System) to model the PV and wind sources. The algorithm developed is compared to HOMER (Hybrid Optimization Model for Electric Renewables) and HOGA (Hybrid Optimization by Genetic Algorithms) software and the results demonstrate an accuracy of 96% for PV and wind. The optimized system is simulated in PSCAD/EMTDC and the results show that low excess energy is achieved. The optimized system is also able to supply power to the load without any renewable sources for a longer period, while conforming to the desired LPSP.  相似文献   

12.
There is an urgent need to provide cost-effective, clean, distributed electricity to ensure reliability for mobile network operators in Sub-Saharan Africa. A comprehensive semi-empirical MATLAB/Simulink model of a novel low-pressure, solid-hydrogen based energy storage system combined with Solar PV and battery energy storage including dynamic losses of the power conditioning equipment is built. Levenburg-Marquardt least square algorithm is used for semi-empirical parameterisation of the metal-hydride and fuel cell models, simulations are performed using experimentally obtained telecom tower load data. The results show the overall system efficiency of the energy system drop from 21.05% for a Solar/Battery system to 17.43% of the most cost-effective hybridised system, which consists of 16.2 kW Solar PV coupled to a 10kW/40 kWh Li-Ion battery, and a Regenerative Hydrogen Fuel Cell (consisting of a 10 kW PEM Electrolyser, 1,000 kWh Ti-based AB2 Solid-Hydrogen Storage Cell, and 5 kW PEM Fuel Cell). This system achieves a Levelised Cost of Electricity of 17.16 ¢/kWh compared to 73.40 ¢/kWh for a Diesel Genset, with a Net Present Value of $109,236 and an Internal Rate of Return of 15.15%.  相似文献   

13.
There is wide public debate about which electricity generating technologies will best be suited to reduce greenhouse gas emissions (GHG). Sometimes this debate ignores real-world practicalities and leads to over-optimistic conclusions. Here we define and apply a set of fit-for-service criteria to identify technologies capable of supplying baseload electricity and reducing GHGs by amounts and within the timescale set by the Intergovernmental Panel on Climate Change (IPCC). Only five current technologies meet these criteria: coal (both pulverised fuel and integrated gasification combined cycle) with carbon capture and storage (CCS); combined cycle gas turbine with CCS; Generation III nuclear fission; and solar thermal backed by heat storage and gas turbines. To compare costs and performance, we undertook a meta-review of authoritative peer-reviewed studies of levelised cost of electricity (LCOE) and life-cycle GHG emissions for these technologies. Future baseload electricity technology selection will be influenced by the total cost of technology substitution, including carbon pricing, which is synergistically related to both LCOE and emissions. Nuclear energy is the cheapest option and best able to meet the IPCC timetable for GHG abatement. Solar thermal is the most expensive, while CCS will require rapid major advances in technology to meet that timetable.  相似文献   

14.
This study addresses the problem of power outages in distant districts by taking advantage of the available renewable energy resources in the surrounding environment. This was done by proposing connecting the utility to a hybrid system constituting from photovoltaic (PV), wind turbine (WT), and fuel cell (FC) systems where this hybrid system is considered as a backup system that works when the grid is unavailable. This hybrid system proposed is used for feeding the load to a tourist resort in Hurghada, Egypt.The design of the introduced system has taken into consideration the cost of purchasing electric energy and the profit from selling it to the utility network. Component scaling was implemented to improve the net present cost of the proposed system using two grouped meta-heuristic techniques, which are the Hybrid Firefly and Harmony Search optimization technique (HFA/HS) and compared to the particle swarm optimization (PSO) technique.Simulation results have shown that the optimal system for solving the grid unavailability consists of eighty PVs, two WTs, twenty FCs, forty-one electrolyzers, and one hundred eighteen hydrogen tanks. The results also showed that the volume of exchange with the grid has reached 4 GW of purchase and 3 GW of sale. It is manifest from the results that the suggested system is economically viable with an LCOE of 0.0628 $/kWh, which is less than the purchase of electricity from the grid for commercial users in Egypt, which is 0.1 $/kWh.  相似文献   

15.
Diesel engine power plants are still widely used on many remote islands in South Korea, despite their disadvantages. Aiming to solve economic and environmental pollution problems, a remote island case study was conducted on Ui Island, aiming to offer a zero-emissions solution by using renewable energy sources in an off-grid application. Power was generated from solar, wind, and hydrogen sources. Li-ion batteries and hydrogen were used as energy storage systems. In addition, PV/battery, wind/battery, PV/wind/battery, PV/battery/PEMFC, wind/battery/PEMFC, and PV/wind/battery/PEMFC systems were simulated using the HOMER software to determine the optimal sizes and techno-economic feasibility. The results show that the PV/wind/battery/PEMFC system is the best system. The configuration of the system consists of 990-kW PV panels, 700-kW wind turbines, a 1088-kWh Li-ion battery bank, 534-kW converter, 300-kW PEMWE system, 300-kg hydrogen tank, and 100-kW PEMFC system. The total NPC of the system is $5,276,069, and the LCOE is 0.366 $/kWh.  相似文献   

16.
This paper presents an experimental study of a standalone hybrid microgrid system. The latter is dedicated to remote area applications. The system is a compound that utilizes renewable sources that are Wind Generator (WG), Solar Array (SA), Fuel Cell (FC) and Energy Storage System (ESS) using a battery. The power electronic converters play a very important role in the system; they optimize the control and energy management techniques of the various sources. For wind and solar subsystem, the speed and Single Input Fuzzy Logic (SIFL) controllers are used respectively to harvest the maximum power point tracking (MPPT). To maintain a balance of energy in the hybrid system, an energy management strategy based on the battery state of charge (SOC) has been developed and implemented experimentally. The AC output voltage regulation was achieved using a Proportional Integral (PI) controller to supply a resistive load with constant amplitude and frequency. According to the obtained performances, it was concluded that the proposed system is very promising for potential applications in hybrid renewable energy management systems.  相似文献   

17.
Solar and wind energy systems are omnipresent, freely available, environmental friendly, and they are considered as promising power generating sources due to their availability and topological advantages for local power generations. Hybrid solar–wind energy systems, uses two renewable energy sources, allow improving the system efficiency and power reliability and reduce the energy storage requirements for stand-alone applications. The hybrid solar–wind systems are becoming popular in remote area power generation applications due to advancements in renewable energy technologies and substantial rise in prices of petroleum products. This paper is to review the current state of the simulation, optimization and control technologies for the stand-alone hybrid solar–wind energy systems with battery storage. It is found that continued research and development effort in this area is still needed for improving the systems’ performance, establishing techniques for accurately predicting their output and reliably integrating them with other renewable or conventional power generation sources.  相似文献   

18.
In addition to the high financial cost of energy resources required to meet the rising demand for electricity consumption in Kuwait, the negative environmental impact of fossil fuel is increasing. Hence, the objective of this paper is to determine the economic feasibility and viability of implementing PV solar energy in the State of Kuwait. It was found that the positive characteristics of solar radiation in Kuwait play a critical role in enhancing the feasibility of implementing solar systems. Under the present price of 5$/W and 15% efficiency, the LCOE of a 1 MW station is estimated to be around $0.20/kWh. This LCOE can be feasible only when the cost of oil is around 100$/barrel. The Cost Benefit Analysis showed that when the value of saved energy resources used in producing traditional electricity, and the cost of lowering CO2 emissions are accounted for, the true economic cost of LCOE of a PV system will decline significantly. The preliminary economic analysis recommends the implementation of PV technology in Kuwait.  相似文献   

19.
A hybrid proton exchange membrane fuel cell (PEMFC) multi-generation system model integrated with solar-assisted methane cracking is established. The whole system mainly consists of a disc type solar Collector, PEMFC, Organic Rankine cycle (ORC). Methane cracking by solar energy to generate hydrogen, which provides both power and heat. The waste heat and hydrogen generated during the reaction are efficiently utilized to generate electricity power through ORC and PEMFC. The mapping relationships between thermodynamic parameters (collector temperature and separation ratio) and economic factors (methane and carbon price) on the hybrid system performance are investigated. The greenhouse gas (GHG) emission reductions and levelized cost of energy (LCOE) are applied to environmental and economic performance evaluation. The results indicate that the exergy utilization factor (EXUF) and energy efficiency of the novel system can reach 21.9% and 34.6%, respectively. The solar-chemical energy conversion efficiency reaches 40.3%. The LCOE is 0.0733 $/kWh when the carbon price is 0.725 $/kg. After operation period, the GHG emission reduction and recovered carbon can reach 4 × 107 g and 14,556 kg, respectively. This novel hybrid system provides a new pathway for the efficient utilization of solar and methane resources and promotes the popularization of PEMFC in zero energy building.  相似文献   

20.
Wind–PV–diesel hybrid power generation system technology is a promising energy option since it provides opportunities for developed and developing countries to harness naturally available, inexhaustible and pollution-less resources. The aim of this study is to assess the techno-economic feasibility of utilizing a hybrid wind–PV–diesel power system to meet the load of Al Hallaniyat Island. Hybrid Optimization Model for Electric Renewables software has been employed to carry out the present study. The simulation results indicate that the cost of generating energy (COE) is $0.222 kWh?1 for a hybrid system composed of a 70 kW PV system, 60 kW wind turbine and batteries together with a 324.8 kW diesel system. Moreover, using the same system but without batteries will increase the COE to $0.225 kWh?1, the fuel consumption, the excess energy and the total operating hours for the diesel generators. The PV–wind hybrid option is techno-economically viable for rural electrification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号